The quotient of the provided division in which binomial is divided by a quadratic equation is x+2.
<h3>What is the quotient?</h3>
Quotient is the resultant number which is obtained by dividing a number with another. Let a number <em>a</em> is divided by number b. Then the quotient of these two number will be,

Here, (a, b) are the real numbers.
The given division expression is,

Let the quotient of this division problem is f(x). Thus,

Factor the numerator expression as,

Thus, the quotient of the provided division in which binomial is divided by a quadratic equation is x+2.
Learn more about the quotient here;
brainly.com/question/673545