tan%7D%5E%7B2%7Da%20%20%2B%20%20%7Bcot%7D%5E%7B2%7D%20a%20%2B%202%20%5C%5C%20" id="TexFormula1" title="sec {}^{2} a \: . \: cosec {}^{2} a = {tan}^{2}a + {cot}^{2} a + 2 \\ " alt="sec {}^{2} a \: . \: cosec {}^{2} a = {tan}^{2}a + {cot}^{2} a + 2 \\ " align="absmiddle" class="latex-formula">
Please help!!!!!!!!!!!!
2 answers:
Answer:
<h3><u>Trigonometric identities</u></h3>



<h3><u>Solution</u></h3>

Answer:
See below ~
Step-by-step explanation:
<u>Identities Needed</u>
- sec a = 1 / cos a
- cosec a = 1 / sin a
- cot a = 1 / tan a
<u />
<u>Proving</u>
- (sec²a)(cosec²a) = tan²a + cot²a + 2
<u>Taking the LHS</u>
- sec²a x cosec²a
- 1/cos²a x 1/sin²a
- 1/(sin²a)(cos²a) -(Equation 1)
<u>Taking the RHS</u>
- tan²a + cot²a + 2
- tan²a + cot²a + 2(tana)(cota)
- (tana + cota)²
- (sina/cosa + cosa/sina)²
- (sin²a + cos²a / sinacosa)²
- (1/sinacosa)²
- 1/(sin²a)(cos²a) -(Equation 2)
∴ Equation 1 = Equation 2
∴ <u>LHS = RHS</u>
Hence, proved.
You might be interested in
The answer is D. 35. The x’s cancel out because x divided by x is 1 leaving you with 70/2 which is then 35.
Hope this helped.
Answer:
Row 1:
2 ; -15 ; 28
Row 2:
2
Row 3:
4 ; 7
Row 4:
-7 ; -4
Row 5:
4 : 7
Row 6:
4 ; 7
Row 7:
4 ; 7 ; 3.5
Answer:
-9
Step-by-step explanation:
Answer:
12
Step-by-step explanation:
She bought five extra hours also 300 minutes