1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mario62 [17]
2 years ago
8

From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm find the radius of

the circle.​
Mathematics
2 answers:
Umnica [9.8K]2 years ago
7 0

\large\bold{{Question :}}

From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm find the radius of the circle.

\large\bold\red{\underline{Solution :-}}

Here, O is the center of the circle.

<u>⟼</u><u> </u><u>Given</u><u> </u><u>:</u>

  • OQ = 25 cm
  • PQ = 24 cm

<u>⟼</u><u> </u><u>To</u><u> </u><u>Find</u><u> </u><u>:</u><u> </u> We have to find the radius OP.

Since QP is tangent, OP perpendicular to QP.

(Since, Tangent is Perpendicular to Radius ⠀⠀⠀⠀⠀⠀⠀at the point of contact)

So, ∠OPQ=90°

<u>⟼</u><u> </u><u>By</u><u> </u><u>Applying</u><u> </u><u>Pythagoras</u><u> </u><u>Theorem</u><u> </u><u>:</u>

OP² + RQ² = OQ²

OP² + (24)² = (25)²

OP² = 625 - 576

OP² = 49

OP = √49

<u>OP</u><u> </u><u>=</u><u> </u><u>7</u><u> </u><u>cm</u>

<u>Hence</u><u>,</u><u> </u><u>The</u><u> </u><u>Radius</u><u> </u><u>is</u><u> </u><u>7</u><u> </u><u>cm</u>

⠀⠀

⠀

<h3>-MissAbhi</h3>

guapka [62]2 years ago
4 0
<h3><u>Expl</u><u>aination</u><u> </u><u>:</u></h3>

Here after drawing the diagram for the question we came to knew that the length of line OQ is 25 cm and length of line PQ is 24 cm.

  • (Angle OP is of 90°)

So line OQ is hypotenuse , line OP is perpendicular , line PQ is base.

Let us simply apply the concept of Pythagoras theorem to find out the length of line OP.

  • Base (PQ) = 24 cm
  • Hypotenuse (OQ) = 25 cm
  • Perpendicular (OP) = ?

:  \: \implies \:  \sf{(Hypotenuse) {}^{2}   \: = \:  (Base) {}^{2}   \: +  \: (Perpendicular) {}^{2}  } \\  \\ :  \: \implies \:  \sf{(OQ) {}^{2}   \: = \:  (OP) {}^{2}   \: +  \: (PQ) {}^{2}  } \\  \\ :  \: \implies \:  \sf{(25) {}^{2}   \: = \:  (OP) {}^{2}   \: +  \: (24) {}^{2}  } \\  \\ :  \: \implies \:  \sf{(OP) {}^{2} \:  =   \: (25) {}^{2}   -  \: (24) {}^{2}} \\  \\ :  \: \implies \:  \sf{(OP) {}^{2} \:  =   \: (25 \times 25)  -  \: (24 \times 24)} \\  \\ :  \: \implies \:  \sf{(OP) {}^{2} \:  =   \: (625)  -  \: (576)} \\  \\ :  \: \implies \:  \sf{(OP) {}^{2} \:  =   \: 625  -  \: 576} \\  \\ :  \: \implies \:  \sf{(OP) {}^{2} \:  =   \: 49} \\  \\ :  \: \implies \:  \sf{OP \:  =   \:  \sqrt{49} } \\  \\ :  \: \implies \:   \red{\bf{OP \:  =   \: 7}}

★ Therefore,

  • Radius of the circle is of 7 cm.

You might be interested in
Write each ratio as a fraction in the lowest terms
stich3 [128]

Answer:

1/4

Step-by-step explanation:

(4\times \frac{3}{8} ) : (12\times \frac{1}{2} )\\\\\frac{4\times \frac{3}{8}}{12\times \frac{1}{2}}\\\\\mathrm{Multiply\:}12\times \frac{1}{2}\::\quad 6\\=\frac{4\times \frac{3}{8}}{6}\\\\\mathrm{Multiply\:}4\times \frac{3}{8}\::\quad \frac{3}{2}\\=\frac{\frac{3}{2}}{6}\\\\=\frac{3}{2\times \:6}\\\\=\frac{3}{12}\\\\=\frac{1}{4}

4 0
4 years ago
Read 2 more answers
A rectangular patio has a length of 12 1/2 feet and an area of 108 1/8 square feet what is the width of the patio
Ivenika [448]

Length of the rectangular patio = 12\frac{1}{2}=\frac{25}{2}

Let the width of the patio be = x

Area of the patio is given as = 108\frac{1}{8}=\frac{865}{8}

As the area of a rectangle is = length*width, so

\frac{865}{8}=(\frac{25}{2})x

\frac{865}{8}*\frac{2}{25}=x

x= \frac{1730}{200} = \frac{173}{20}

x = 8\frac{13}{20}

Hence, width of the patio is 8\frac{13}{20} feet.

7 0
3 years ago
Find (a) the amplitude, (b) the wavelength, (c) the period, and (d) the speed of a wave whose displacement is given by y= 1.5 co
leonid [27]

Answer with Step-by-step explanation:

We are given that displacement of wave

y=1.5cos(0.68x+37t)

Where y in cm  and t in sec.

a.Compare it with

y=Acos(kx+\omega t)

Amplitude of wave=A

We get A=1.5

Amplitude=A=1.5  cm

b.k=0.68

\frac{2\pi}{\lambda}=0.68

\lambda=\frac{2\times 3.14}{0.68}=9.2 cm

Using \pi=3.14

Wavelength of the wave=9.2 cm

c.Period=\frac{2\pi}{T}=\omega

\frac{2\pi}{T}=37

T=\frac{2\times 3.14}{37}=0.17 s

The period of the wave=0.17 s

Speed of the wave=\nu \lambda=\frac{\lambda}{T}=\frac{9.2}{0.17}

Speed of the wave=54.1 cm/s

8 0
3 years ago
To qualify for a scholarship, a student must score at least 90% on a written test. The test is 64 questions. Using this metric,
Ket [755]

Answer:

6 questions

Step-by-step explanation:

<u>First</u>, you divide the total score of 100 by the 64 questions to get 1.5625 points per question. <u>Next</u>, you divide the lowest score to qualify of 90 by the 1.5625 to get 57.6 questions correct to qualify. <u>Then</u>, you round 57.6 questions correct up to 58 questions correct because a fraction of a question correct doesn't make sense. <u>Finally</u>, you subtract the total number of questions (64) by the required correct answers (58) to get 6 questions you can miss to still qualify for the scholarship.

6 0
3 years ago
Divide. −5 1/3÷2 3/4
svp [43]

Answer:

-64/33

Step-by-step explanation:

-5 1/3 / 2 3/4

-16/3 / 11/4

-16/3 * 4/11

-64/33

8 0
4 years ago
Other questions:
  • What is the least common multiple of 21 and 30?
    12·2 answers
  • Help meh pls im stuck on dis
    8·2 answers
  • The total price of four oranges and five pears is $32 while the total price of three oranges and two pears is $17. How much is a
    8·2 answers
  • Write y = 1/6x + 4 in standard form using integers.
    5·2 answers
  • an auditorium holds 72 people for a school assembly. only staff and students will attend. if the number of students is 8 times t
    9·2 answers
  • Multiply polynomials (x+4)(x+5)
    8·1 answer
  • Algebra question !!! Please help tyty
    5·2 answers
  • (ILL GIVE BRAINLIEST!!)<br><br><br> What is friction and when does it occur?
    15·2 answers
  • Write the missing base.
    8·2 answers
  • the length of the rectangle is 10 centimetre more than its breadth if the perimeter of a rectangle is 30 cm find the length and
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!