1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisov135 [29]
3 years ago
12

What is the volume of a cylinder with a height of 2 feet and a radius of 6 feet? Use 3.14 for pi. Enter your answer in the box.

ft³
Mathematics
2 answers:
erastovalidia [21]3 years ago
7 0

Answer:

V=226.08\ ft^3

Step-by-step explanation:

we know that

The volume of a cylinder is equal to

V=\pi r^{2} h

where

r is the radius of the base of the cylinder

h is the height of the cylinder

we have

r=6\ ft\\h=2\ ft\\\pi=3.14

substitute the given values in the formula

V=(3.14)(6)^{2}(2)\\ V=226.08\ ft^3

UkoKoshka [18]3 years ago
7 0

Answer:

226.08 ft3

Step-by-step explanation:

You might be interested in
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
Inequality of -3x - 6 &lt; 50
il63 [147K]

Answer:

0

Step-by-step explanation:

look it up on google :)

3 0
3 years ago
I need help SOO bad Help me please!!!!!
miss Akunina [59]
It would be 5/8 Inches from the edge
3 0
3 years ago
Read 2 more answers
Identify examples and non-examples of the standard form of a linear function.
marin [14]

Answer:

  1. 5x - 3y = 9 (Example)
  2. y = 1/2x - 3 (Non-Example)
  3. 2x + 3y = 0 (Example)
  4. x + y = 1 (Example)
  5. x = 6y (Non-Example)
  6. y = x - 2 (Non-example)

Step-by-step explanation:

Standard form of the equation is given by:

Ax + By = C

Where

  • x and y are variables
  • A, B and C are constants which must be Integers. A should always be positive.

Considering the definition, we can identify the examples and non-examples of standard from of a linear equation.

<h3>5x - 3y = 9</h3>
  • In a form of Ax + By = C
  • A,B and C are constants
  • A=5 is positive

It is an EXAMPLE of standard form of linear function

<h3></h3><h3>y = 1/2x - 3</h3>
  • Not in the form of Ax + By =C

NON-EXAMPLE

<h3></h3><h3>2x + 3y = 0</h3>
  • In a form of Ax + By = C
  • A,B and C are constants
  • A=5 is positive

It is an EXAMPLE of standard form of linear function

<h3></h3><h3>x + y = 1</h3>
  • In a form of Ax + By = C
  • A,B and C are constants
  • A=5 is positive

It is an EXAMPLE of standard form of linear function

<h3></h3><h3>x = 6y</h3>
  • Not in the form of Ax + By =C

NON-EXAMPLE

<h3></h3><h3>y = x - 2</h3>
  • Not in the form of Ax + By =C

NON-EXAMPLE

6 0
3 years ago
We need to take care of these annoying bots once and for all
satela [25.4K]

Answer:

yes we should >:(

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • Chart in last question ​
    12·2 answers
  • Choose the slope-intercept form of 3x + 2y = 5
    14·1 answer
  • The bank offered a 0.6% interest rate. find 0.6% of $1300........ (Help pls :( )
    7·2 answers
  • A scale on a map shows that 2 inches equals 25 miles. How many miles is represented by 1/4 inch on the map?
    7·1 answer
  • The number of subsets that can be created from the set {1, 2, 3} is
    9·1 answer
  • Um técnico em eletricidade recebeu um molho que continha 12 chaves não identificadas pra abrir a porta de um quarto de hotel e e
    5·1 answer
  • How do I write an expression for n . a using only addition
    11·1 answer
  • ......help please......<br> .<br> .
    15·1 answer
  • Need help on this! Please someone help!!!
    7·1 answer
  • Consider the dot plot below. Of the following statements, which two characteristics of this dot plot make the median a better ch
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!