Answer:
We can do it with envelopes with amounts $1,$2,$4,$8,$16,$32,$64,$128,$256 and $489
Step-by-step explanation:
- Observe that, in binary system, 1023=1111111111. That is, with 10 digits we can express up to number 1023.
This give us the idea to put in each envelope an amount of money equal to the positional value of each digit in the representation of 1023. That is, we will put the bills in envelopes with amounts of money equal to $1,$2,$4,$8,$16,$32,$64,$128,$256 and $512.
However, a little modification must be done, since we do not have $1023, only $1,000. To solve this, the last envelope should have $489 instead of 512.
Observe that:
- 1+2+4+8+16+32+64+128+256+489=1000
- Since each one of the first 9 envelopes represents a position in a binary system, we can represent every natural number from zero up to 511.
- If we want to give an amount "x" which is greater than $511, we can use our $489 envelope. Then we would just need to combine the other 9 to obtain x-489 dollars. Since
, by 2) we know that this would be possible.
Answer:
hypotenuse=root of( base square + height square)
Step-by-step explanation:
by using pythogorus theorem we can find the side of any right triangle square
The answer is a the more balls means the more chance a desired color will be chosen
Answer:
Step-by-step explanation: your going to find the y intercept
find the domain
find the inverse
find the derivative
find the extrema
find the horizontal asymptotes
tell weather its even or odd
but its X=0