The kinetic energy and the physical state of water depend strongly on the temperature;
- Firstly, The kinetic energy of water on a hot stove is higher than that on the counter in the freezer; that the kinetic energy is directly proportional to the temperature according to the relation:
; where R is the universal gas constant, T is the temperature and NA is Avogadro number.
As the temperature increases, the speed of colliding molecules increases and the kinetic energy increases.
- Secondly, The physical state of water depends on the temperature; water has three states (gas, liquid and solid) depends on the temperature.
- If a glass of water is putt on the counter in the freezer, it will be converted to the solid state (ice).
- And, as if it is putt on a hot stove, it will be vapor (gaseous state).
Answer:
The answer is: 18 moles and 1341, 72 grams of KCl
Explanation:
The molarity is defined as the moles of solute ( in this case KCl) in 1 liter of solution:
1L solution-----3 moles of KCl
6L solution-----x= (6L solutionx 3 moles of KCl)/1 L solution= <em>18 moles of KCl</em>
<em></em>
We calculate the weight of 1 mol of KCl:
Weight 1 mol KCl= Weight K + Weight Cl= 39,09 g + 35, 45 g=74, 54 g/mol
1 mol KCl----- 74, 54 g
18 mol KCl----x= (18 mol KCl x 74, 54 g)/1 mol KCl=<em>1341, 72 g</em>
Answer:
Explanation:
Initial burette reading = 1.81 mL
final burette reading = 39.7 mL
volume of NaOH used = 39.7 - 1.81 = 37.89 mL .
37.89 mL of .1029 M NaOH is used to neutralise triprotic acid
No of moles contained by 37.89 mL of .1029 M NaOH
= .03789 x .1029 moles
= 3.89 x 10⁻³ moles
Since acid is triprotic , its equivalent weight = molecular weight / 3
No of moles of triprotic acid = 3.89 x 10⁻³ / 3
= 1.30 x 10⁻³ moles .
Answer:
It has been suggested that climate change, which would generally lead to warmer winters in the Northeast, may make it difficult to produce some apple varieties in parts of the region. ... Greater variability in weather, such as warm periods followed by cold snaps in winter, can damage both flower buds and trees.
Explanation: