Answer:
Step-by-step explanation:
In general:
Volume = (the area of the base of the figure) times (the figure's height)
Here, the area of the base is 4 square feet, the height is 2 1/2 foot = 5/2 foot
Our Volume is then:
4 square feet * 5/2 foot = 10 cubic feet
Hi there!


We can calculate dy/dx using implicit differentiation:
xy + y² = 6
Differentiate both sides. Remember to use the Product Rule for the "xy" term:
(1)y + x(dy/dx) + 2y(dy/dx) = 0
Move y to the opposite side:
x(dy/dx) + 2y(dy/dx) = -y
Factor out dy/dx:
dy/dx(x + 2y) = -y
Divide both sides by x + 2y:
dy/dx = -y/x + 2y
We need both x and y to find dy/dx, so plug in the given value of x into the original equation:
-1(y) + y² = 6
-y + y² = 6
y² - y - 6 = 0
(y - 3)(y + 2) = 0
Thus, y = -2 and 3.
We can calculate dy/dx at each point:
At y = -2: dy/dx = -(-2) / -1+ 2(-2) = -2/5.
At y = 3: dy/dx = -(3) / -1 + 2(3) = -3/5.
Answer:
Step-by-step explanation:
The perimeter is all the side lengths added together
In this case, the
perimeter = x + (x+4) + (x+6) = 3x + 10
The correct answer is the first choice
Total height of lumber, H = 10 1/2 feet = 21/2 feet .
Height of side panel, h = 5 2/3 feet = 17/3 feet .
Now,
Extra lumber required, L = 2 × Height of side panel - Total height of lumber
![L=[2\times (\dfrac{17}{3})]-\dfrac{21}{2}\\\\L = \dfrac{5}{6}\ feet](https://tex.z-dn.net/?f=L%3D%5B2%5Ctimes%20%28%5Cdfrac%7B17%7D%7B3%7D%29%5D-%5Cdfrac%7B21%7D%7B2%7D%5C%5C%5C%5CL%20%3D%20%5Cdfrac%7B5%7D%7B6%7D%5C%20feet)
Therefore, extra lumber required is
feet.
Hence, this is the required solution.
It’s the third graph down!!