1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
egoroff_w [7]
2 years ago
13

Helppp meeeeee please ​

Mathematics
1 answer:
Illusion [34]2 years ago
3 0

Answer:

The answer is F

Step-by-step explanation:

Because I said so

You might be interested in
What is a expression that equals 3/8? Like a written out expression?​
Leno4ka [110]

Answer: not sure what this question means but i assume three eighths or 0.375

Depends on context

Step-by-step explanation:

3 0
3 years ago
What would be the most logical first step for solving this quadratic equation?
Sav [38]

Answer:

D. Subtract 4 from both sides

Explanation:

I just learned about quadratic equations in school. The first step of solving quadratic equations is to make sure it is in standard form and equal to 0.

Standard form:

ax^2 + bx + c = 0

4 0
2 years ago
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
What algebraic expression is a polynomial
nata0808 [166]

Answer:In mathematics, a polynomial is an expression consisting of variables (also called indeterminates) and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponents of variables. An example of a polynomial of a single indeterminate, x, is x2 − 4x + 7.

Step-by-step explanation:

Hope this helps

stay safe

plz give brainiest if this helped

4 0
3 years ago
the equation y=1.25x represents the cost (y) to hit (x) granola bars at the snack shop. The table shows the cost of granola bars
Alla [95]

Answer:

snack shop

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • Find the LCM of 5,10 and 15​
    9·2 answers
  • Fine the slope of the line graphed ?
    9·1 answer
  • A class has 50 students. use the third row of digits in the random number table below to select a simple random sample of three
    12·1 answer
  • Find the slope of each line.<br> 1) y+3 ==*
    11·1 answer
  • 3) Kelsey ran 1.9 miles on Tuesday. On Saturday she ran twice as much. How
    15·2 answers
  • Algebra 1 help please!
    5·1 answer
  • Which of the following describes point C<br> (-2,1)<br> (-2,-1)<br> (1,-2)<br> (-1,-2)
    14·1 answer
  • PLEASE HELP ASAP ILL MAKE BRAINLIEST
    14·1 answer
  • Find the sum of the first 10 terms of the sequence -8, -2, 4, 10, ...
    10·1 answer
  • 1. Which of the following is the 65th term in the sequence 8, 5, 2,-1,
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!