Use Stokes' theorem for both parts, which equates the surface integral of the curl to the line integral along the surface's boundary.
a. The boundary of the hemisphere is the circle
in the plane
, where the curl is
. Green's theorem applies here, so that

which means the value of the line integral is 3 times the area of the circle, or
.
b. The closed sphere has no boundary, so by Stokes' theorem the integral is 0.
18.03 inches
Put the dimensions into the pythagorean theorem, that will give you the answer.
Answer:
(2, -3) and r = 3.
Step-by-step explanation:
you can also plug this equation in desmos but I guess it's good to know how to do it also:
The equation of a circle is (x-h)^2 + (y-k)^2 = r^2
Now in order to make a perfect square on both sides, we need to do this:
First add 9 to both sides:
x^2 + 6x + 9 + y^2 -4y +4 = 9.
I purposely shifted it to show the perfect square created when you add 9 to both sides. Factor:
(x+3)^2 + y^2 - 4y + 4 = 9.
now the second bolded part is allso a perfect square. Factor:
(x+3)^2 + (y-2)^2 = 9
Based on the equation of a circle, the center must be at (2, -3) and the radius is the square root of 9 which is 3.
:)