The <em>approximate surface</em> areas of corresponding prisms are listed below:
- <em>A = 108 units²</em>
- <em>A = 229 units²</em>
- <em>A = 454 units²</em>
<h3>How to match given surface areas with given figures</h3>
The <em>surface</em> area of the each figure (
), in square units, is equal to the sum of the <em>surface</em> area of the two bases (
), in square units, and the <em>surface</em> areas of the <em>lateral</em> sides (
), in square units. Since bases are <em>regular</em> polygons, <em>base surface</em> area can be determined by this expression:
(1)
Where:
- <em>l</em> - Side length, in units
- <em>n</em> - Number of sides
The area of one lateral side is expressed by this expression:
(2)
Where <em>h</em> is the height of the rectangle, in units.
The total surface area is defined by the following formula:
(3)
Now we proceed to calculate each surface area:
<h3>Case I (

,

,

)</h3>
![A = 2\cdot \left[\frac{2^{2}\cdot (6)}{4\cdot \tan \left(\frac{180}{6} \right)} \right]+6\cdot (2)\cdot (9)](https://tex.z-dn.net/?f=A%20%3D%202%5Ccdot%20%5Cleft%5B%5Cfrac%7B2%5E%7B2%7D%5Ccdot%20%286%29%7D%7B4%5Ccdot%20%5Ctan%20%5Cleft%28%5Cfrac%7B180%7D%7B6%7D%20%5Cright%29%7D%20%5Cright%5D%2B6%5Ccdot%20%282%29%5Ccdot%20%289%29)
<em>A = 108.136 units²</em>
<h3>Case II (

,

,

)</h3>
![A = 2\cdot \left[\frac{(4\sqrt{3})^{2}\cdot (3)}{4\cdot \tan \left(\frac{180}{3} \right)} \right]+3\cdot (4\sqrt{3})\cdot (9)](https://tex.z-dn.net/?f=A%20%3D%202%5Ccdot%20%5Cleft%5B%5Cfrac%7B%284%5Csqrt%7B3%7D%29%5E%7B2%7D%5Ccdot%20%283%29%7D%7B4%5Ccdot%20%5Ctan%20%5Cleft%28%5Cfrac%7B180%7D%7B3%7D%20%5Cright%29%7D%20%5Cright%5D%2B3%5Ccdot%20%284%5Csqrt%7B3%7D%29%5Ccdot%20%289%29)
<em>A = 228.631 units²</em>
<h3>Case III (

,

,

)</h3>
![A = 2\cdot \left[\frac{6^{2}\cdot (5)}{4\cdot \tan \left(\frac{180}{5} \right)} \right]+5\cdot (6)\cdot (11)](https://tex.z-dn.net/?f=A%20%3D%202%5Ccdot%20%5Cleft%5B%5Cfrac%7B6%5E%7B2%7D%5Ccdot%20%285%29%7D%7B4%5Ccdot%20%5Ctan%20%5Cleft%28%5Cfrac%7B180%7D%7B5%7D%20%5Cright%29%7D%20%5Cright%5D%2B5%5Ccdot%20%286%29%5Ccdot%20%2811%29)
<em>A = 453.874 units²</em>
The <em>approximate surface</em> areas of corresponding prisms are listed below:
- <em>A = 108 units²</em>
- <em>A = 229 units²</em>
- <em>A = 454 units²</em>
To learn more on surface areas, we kindly invite to check this verified question: brainly.com/question/2835293