Answer:
b=i*
or -i*
Step-by-step explanation:
11b^2-9=-68
11b^2=-59
b^2=-59/11
b=i*
or -i*
"i" in this case is an imaginary number, equal to 
if you haven't learned about these yet, something is wrong with the question
(9x 10^-3)^2=
, so d 8.1x10^-6
Evaluate 1/2a^-4b^2 for a =-2 and b=4

A number raised to a negative exponent is sometimes negative.
Hope this helps, now you know the answer and how to do it. HAVE A BLESSED AND WONDERFUL DAY! As well as a great Valentines Day! :-)
- Cutiepatutie ☺❀❤
The first example has students building upon the previous lesson by applying the scale factor to find missing dimensions. This leads into a discussion of whether this method is the most efficient and whether they could find another approach that would be simpler, as demonstrated in Example 2. Guide students to record responses and additional work in their student materials.
§ How can we use the scale factor to write an equation relating the scale drawing lengths to the actual lengths?
!
ú Thescalefactoristheconstantofproportionality,ortheintheequation=or=!oreven=
MP.2 ! whereistheactuallength,isthescaledrawinglength,andisthevalueoftheratioofthe drawing length to the corresponding actual length.
§ How can we use the scale factor to determine the actual measurements?
ú Divideeachdrawinglength,,bythescalefactor,,tofindtheactualmeasurement,x.Thisis
! illustrated by the equation = !.
§ How can we reconsider finding an actual length without dividing?
ú We can let the scale drawing be the first image and the actual picture be the second image. We can calculate the scale factor that relates the given scale drawing length, , to the actual length,. If the actual picture is an enlargement from the scale drawing, then the scale factor is greater than one or
> 1. If the actual picture is a reduction from the scale drawing, then the scale factor is less than one or < 1.
Scaffolding:
A reduction has a scale factor less than 1, and an enlargement has a scale factor greater than 1.
Lesson 18: Computing Actual Lengths from a Scale Drawing.
Answer: The volume of largest rectangular box is 4.5 units.
Step-by-step explanation:
Since we have given that
Volume = 
with subject to 
So, let 
So, Volume becomes,

Partially derivative wrt x and y we get that

By solving these two equations, we get that

So, 
So, Volume of largest rectangular box would be

Hence, the volume of largest rectangular box is 4.5 units.