1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allsm [11]
2 years ago
15

How many fixed points are there for the function f(x) = x^5?

Mathematics
1 answer:
Rufina [12.5K]2 years ago
3 0

Using the fixed point concept, it is found that f(x) has 3 real fixed points.

-------------------------------

The fixed points of a function f(x) are the values of x for which:

f(x) = x

In this question:

f(x) = x^5

Then

x = x^5

x^5 - x = 0

x(x^4 - 1) = 0

Applying subtraction of perfect squares, x^4 - 1 = (x^2 - 1)(x^2 + 1)

Again, x^2 - 1 = (x - 1)(x + 1)

Then

x(x^4 - 1) = 0

x(x - 1)(x + 1)(x^2 + 1) = 0

There are 3 real fixed points, x = 0, x = 1 and x = -1.

A similar problem is given at brainly.com/question/22560442

You might be interested in
Are these expressions equivalent? Explain why or why not. 42 + 35 7(6 + 5)
cricket20 [7]
You use pemdas and they both equal to 77. So yes they are equivalent.
8 0
3 years ago
Read 2 more answers
+
dmitriy555 [2]

Answer:

+ + + + += + + + + +

Step-by-step explanation:

DUH        

I mean I think I'm right

8 0
4 years ago
One leg of a right triangle measures 6 inches. The remaining leg measures 6√3 inches. What is the measure of the angle opposite
Simora [160]
30°
Here's why:
Using the well-known Pythagorian theorem we can reckon how long the hypotenuse is:
c^2=6^2+36*3 -> c=12
Knowing that sin(a)=a/c=6/12=0.5 the measure of the angle in degrees is 30°
Hope could help :)
7 0
4 years ago
Read 2 more answers
Use the form of the definition of the integral given in the theorem to evaluate the integral. ∫ 0 − 2 ( 7 x 2 + 7 x ) d x
Murrr4er [49]

Answer:

\int _{-2}^07x^2+7xdx=\frac{14}{3}

Step-by-step explanation:

The definite integral of a continuous function <em>f</em> over the interval [a,b] denoted by \int\limits^b_a {f(x)} \, dx, is the limit of a Riemann sum as the number of subdivisions approaches infinity. That is,

\int\limits^b_a {f(x)} \, dx=\lim_{n \to \infty} \sum_{i=1}^{n}\Delta x \cdot f(x_i)

where \Delta x = \frac{b-a}{n} and x_i=a+\Delta x\cdot i

To evaluate the integral

\int\limits^{0}_{-2} {7x^{2}+7x } \, dx

you must:

Find \Delta x

\Delta x = \frac{b-a}{n}=\frac{0+2}{n}=\frac{2}{n}

Find x_i

x_i=a+\Delta x\cdot i\\x_i=-2+\frac{2i}{n}

Therefore,

\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} f(-2+\frac{2i}{n})

\int\limits^{0}_{-2} {7x^{2}+7x } \, dx=\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})

\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7[(-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})]\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} 4-\frac{8i}{n}+\frac{4i^2}{n^2} -2+\frac{2i}{n}\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2

\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2\\\\\lim_{n \to \infty}\frac{14}{n}[ \sum_{i=1}^{n} \frac{4i^2}{n^2}-\sum_{i=1}^{n}\frac{6i}{n}+\sum_{i=1}^{n}2]\\\\\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\sum_{i=1}^{n}i^2 -\frac{6}{n}\sum_{i=1}^{n}i+\sum_{i=1}^{n}2]

We can use the facts that

\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6}

\sum_{i=1}^{n}i=\frac{n(n+1)}{2}

\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\cdot \frac{n(n+1)(2n+1)}{6}-\frac{6}{n}\cdot  \frac{n(n+1)}{2}+2n]\\\\\lim_{n \to \infty}\frac{14}{n}[-n+\frac{2\left(n+1\right)\left(2n+1\right)}{3n}-3]\\\\\lim_{n \to \infty}\frac{14\left(n^2-3n+2\right)}{3n^2}

\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(\frac{n^2-3n+2}{n^2}\right)\\\\\mathrm{Divide\:by\:highest\:denominator\:power:}\:1-\frac{3}{n}+\frac{2}{n^2}\\\\\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(1-\frac{3}{n}+\frac{2}{n^2}\right)\\\\\frac{14}{3}\left(\lim _{n\to \infty \:}\left(1\right)-\lim _{n\to \infty \:}\left(\frac{3}{n}\right)+\lim _{n\to \infty \:}\left(\frac{2}{n^2}\right)\right)\\\\\frac{14}{3}\left(1-0+0\right)\\\\\frac{14}{3}

Thus,

\int _{-2}^07x^2+7xdx=\frac{14}{3}

5 0
4 years ago
In a 30-60-90 triangle, how many sides do you need to know in order to determine the remaining sides?
podryga [215]
You need to know one side.
3 0
4 years ago
Read 2 more answers
Other questions:
  • Two numbers have a difference of 24. What is the sum of their squares if it is a minimum?
    5·1 answer
  • What 487 divided by 45
    13·1 answer
  • Help with this question, please!!
    13·1 answer
  • Find the mean of this set of numbers. 9, –6, –8, 11, –4, 10 a. 12 b. 8 c. 48 d. 2
    9·1 answer
  • Can someone help with this please??
    8·1 answer
  • Find x <br> 2 ^30 divided by 8^9= 2x
    9·2 answers
  • Could someone help me out with this math question 20 points correct answers only
    14·1 answer
  • Which expression is equal to 13/14<br><br> 14−13<br><br> 13−14​<br><br> 14 ÷ 13<br><br> 13 ÷ 14
    10·1 answer
  • Plz answer it plz<br><br><br><br><br>step by step plz​
    8·2 answers
  • 255,250,245,... Find the 40th term.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!