Answer:
There are many points at which eukaryotic gene expression can be controlled, through pretranscriptional control, transcriptional control, and posttranscriptional control
Explanation:
The pretranscriptional control determines the accessibility of chromatin to the transcription machinery. It is affected by supercoiling and methylation. It is also known as epigenetic regulation, and it does not depend on the sequence but on the conformation of the DNA.
While transcriptional control determines the frequency and / or speed of transcription initiation through the accessibility of the start sites, the availability of transcription factors and the effectiveness of promoters.
The post-transcriptional control is the one that is exercised once the transcript has finished synthesizing. It can be of several types:
• Maturation control: As the RNA adjustment can be made.
• Transport control: Most RNA has to go out to the cytoplasm to perform its function. For this they have to cross the pores of the nuclear membrane, where you can select the RNAs that will be transported and those that will not.
• Stability control: The half-life of RNA can be regulated by the expression of RNAs or mRNA stabilizing proteins in the cytoplasm.
• Translational control: It is exercised on the frequency with which the mRNAs begin to be translated. It can also affect the frequency with which proteins mature and the availability of enzymatic effectors.
Answer:
fat
Explanation:
only plants use starch as a way if storage of energy. Humans, for example, use fat as a way to store energy
Answer:
c. If the double helix were unwound, each nucleotide along the two parent strands would form a hydrogen bond with its complementary nucleotide.
Explanation:
According to the Watson-Crick model, two DNA strands are held together by complementary base pairing wherein each nucleotide of one DNA strand forms hydrogen bonds with its complementary nucleotide present in the other strand. During DNA replication, two DNA strands are separated by the action of helicases enzymes.
The separated DNA strands serve as a template for DNA replication. Here, each nucleotide of the template DNA strand binds to its complementary nucleotide by hydrogen bonds. For example, adenine of the template strand forms two hydrogen bonds with thymine while guanine forms three hydrogen bonds with cytosine.
XX if female and XY is male