1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katovenus [111]
3 years ago
15

solo el 20% de los empleados de la población civil que está en una base militar restringida porta su identificación personal. Si

llegan 10 empleados, cuál es la probabilidad de que el guardia de seguridad encuentre
Mathematics
1 answer:
prisoha [69]3 years ago
3 0

Usando la distribución binomial, hay una probabilidad de 0.8926 = 89.26% de que el guardia de seguridad encuentre al menos uno en la base militar restringida.

<h3>¿Qué es la distribución binomial?</h3>

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

C_{n,x} = \frac{n!}{x!(n-x)!}

Los parámetros son:

  • n es el número de ensayos.
  • p es la probabilidad de éxito en un ensayo
  • x es el número de éxitos

En este problema, hay que:

  • 20% de los empleados de la población civil que está en una base militar restringida porta su identificación personal, o sea p = 0.2.
  • Llegan 10 empleados, o sea, n = 10.

La probabilidad de que el guardia de seguridad encuentre al menos uno en la base militar restringida es dada por:

P(X \geq 1) = 1 - P(X = 0)

En que:

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 0) = C_{10,0}.(0.2)^{0}.(0.8)^{10} = 0.1074

Por eso:

P(X \geq 1) = 1 - P(X = 0) = 1 - 0.1074 = 0.8926

Hay una probabilidad de 0.8926 = 89.26% de que el guardia de seguridad encuentre al menos uno en la base militar restringida.

Puede-se aprender más a cerca de la distribución binomial en brainly.com/question/25132113

You might be interested in
Need help on question 5 please help
blagie [28]

Answer:

  $66

Step-by-step explanation:

It can be convenient to assign a different variable to the amount of money each spent. We can call the amounts spent by Seedevi, Georgia, and Amy "s", "g", and "a", respectively.

The problem statement tells us ...

  s = (1/2)g

  s = a +6

  s + g + a = 258

__

The problem statement asks for the amount Seedevi spent, so we need to find the value of s. It is convenient to write the other variables in terms of s:

  g = 2s

  a = s -6

Then the sum is ...

  s + (2s) +(s -6) = 258

  4s = 264 . . . . . . . . . . . add 6, simplify

  s = 66 . . . . . . . . . . . . . .divide by 4

Seedevi spent $66.

4 0
3 years ago
A 3 foot tall globe standing next to a woman cast an 8 ft shadow. if the woman cats a shadow that is 16ft long , then how tall i
My name is Ann [436]

The woman is 6 foot tall

<h3>What is proportion?</h3>

Proportion can be defined as the mathematical comparison of two numbers.

These numbers could be numbers, elements, set or people

From the information given, we have that;

  • The globe is 3 feet and casts a shadow of 8ft
  • The woman cast a shadow of 16ft and is x feet tall

So,

if the globe is 3 foot tall and casts a shadow of 8ft

Then the woman is x foot tall to cast a shadow of 16ft

cross multiply

8x = 24

Make 'x' the subject

x = 48/ 8

x = 6 foot

Thus, the woman is 6 foot tall

Learn more about proportion here:

brainly.com/question/1781657

#SPJ1

3 0
2 years ago
The rent of a room is increased from rupees 2500 to rupees 3000 . Find the percent increase in rent
evablogger [386]

3,000 - 2,500 = 500

500/2,500 = 20%

The percent increase is 20%.

Hope this helps!

If it does it would be really helpful if you could make me brainliest.

3 0
3 years ago
Read 2 more answers
Vance wants to have pictures framed. Each frame and mat cost $32 and he has at most $150 to spend. Write and solve an inequality
brilliants [131]
32x< 150 , where x is the number of pictures framed. So 150/32 = 4.6875, since no pictures are purchased as whole the most he could buy is 4 
5 0
3 years ago
Evaluate the following integral (Calculus 2) Please show step by step explanation!
barxatty [35]

Answer:

\dfrac{1}{2} \left(25 \arcsin \left(\dfrac{x}{5}\right) -x\sqrt{25-x^2}\right) + \text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{x^2}{\sqrt{25-x^2}}\:\:\text{d}x

Rewrite 25 as 5²:

\implies \displaystyle \int \dfrac{x^2}{\sqrt{5^2-x^2}}\:\:\text{d}x

<u>Integration by substitution</u>

<u />

\boxed{\textsf{For }\sqrt{a^2-x^2} \textsf{ use the substitution }x=a \sin \theta}

\textsf{Let }x=5 \sin \theta

\begin{aligned}\implies \sqrt{5^2-x^2} & =\sqrt{5^2-(5 \sin \theta)^2}\\ & = \sqrt{25-25 \sin^2 \theta}\\ & = \sqrt{25(1-\sin^2 \theta)}\\ & = \sqrt{25 \cos^2 \theta}\\ & = 5 \cos \theta\end{aligned}

Find the derivative of x and rewrite it so that dx is on its own:

\implies \dfrac{\text{d}x}{\text{d}\theta}=5 \cos \theta

\implies \text{d}x=5 \cos \theta\:\:\text{d}\theta

<u>Substitute</u> everything into the original integral:

\begin{aligned}\displaystyle \int \dfrac{x^2}{\sqrt{5^2-x^2}}\:\:\text{d}x & = \int \dfrac{25 \sin^2 \theta}{5 \cos \theta}\:\:5 \cos \theta\:\:\text{d}\theta \\\\ & = \int 25 \sin^2 \theta\end{aligned}

Take out the constant:

\implies \displaystyle 25 \int \sin^2 \theta\:\:\text{d}\theta

\textsf{Use the trigonometric identity}: \quad \cos (2 \theta)=1 - 2 \sin^2 \theta

\implies \displaystyle 25 \int \dfrac{1}{2}(1-\cos 2 \theta)\:\:\text{d}\theta

\implies \displaystyle \dfrac{25}{2} \int (1-\cos 2 \theta)\:\:\text{d}\theta

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\cos kx$}\\\\$\displaystyle \int \cos kx\:\text{d}x=\dfrac{1}{k} \sin kx\:\:(+\text{C})$\end{minipage}}

\begin{aligned} \implies \displaystyle \dfrac{25}{2} \int (1-\cos 2 \theta)\:\:\text{d}\theta & =\dfrac{25}{2}\left[\theta-\dfrac{1}{2} \sin 2\theta \right]\:+\text{C}\\\\ & = \dfrac{25}{2} \theta-\dfrac{25}{4}\sin 2\theta + \text{C}\end{aligned}

\textsf{Use the trigonometric identity}: \quad \sin (2 \theta)= 2 \sin \theta \cos \theta

\implies \dfrac{25}{2} \theta-\dfrac{25}{4}(2 \sin \theta \cos \theta) + \text{C}

\implies \dfrac{25}{2} \theta-\dfrac{25}{2}\sin \theta \cos \theta + \text{C}

\implies \dfrac{25}{2} \theta-\dfrac{5}{2}\sin \theta \cdot 5 \cos \theta + \text{C}

\textsf{Substitute back in } \sin \theta=\dfrac{x}{5} \textsf{ and }5 \cos \theta = \sqrt{25-x^2}:

\implies \dfrac{25}{2} \theta-\dfrac{5}{2}\cdot \dfrac{x}{5} \cdot \sqrt{25-x^2} + \text{C}

\implies \dfrac{25}{2} \theta-\dfrac{1}{2}x\sqrt{25-x^2} + \text{C}

\textsf{Substitute back in } \theta=\arcsin \left(\dfrac{x}{5}\right) :

\implies \dfrac{25}{2} \arcsin \left(\dfrac{x}{5}\right) -\dfrac{1}{2}x\sqrt{25-x^2} + \text{C}

Take out the common factor 1/2:

\implies \dfrac{1}{2} \left(25 \arcsin \left(\dfrac{x}{5}\right) -x\sqrt{25-x^2}\right) + \text{C}

Learn more about integration by trigonometric substitution here:

brainly.com/question/28157322

6 0
2 years ago
Other questions:
  • The half of the day from midday to midnight can be described as
    10·1 answer
  • Ryan has 10 apples hames to 7 how many are left
    13·2 answers
  • What is a perfect squares​
    8·2 answers
  • Simplify<br><br> (-28xy)divided by(-4)
    9·1 answer
  • Which is bigger 2/5 or 3/10
    5·2 answers
  • I need help what's the answer ?
    13·1 answer
  • I NEED HELP ASAP WITH EXPLANATION PLEASE!!!!!!!!!$!_!$!
    6·1 answer
  • 85.2 grams to ounces
    15·2 answers
  • G(x)=x^2+3x-3<br> What are the zeros of the function?
    9·1 answer
  • Assume a gasoline price of $3.55 per gallon. What is the gasoline cost for a 2000 mile trip if you drive at an average speed of
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!