We will use the following law of indices (or 'index law') to check each pair of expression
![x^{ \frac{m}{n}} = ( \sqrt[n]{x} )^{m}](https://tex.z-dn.net/?f=%20x%5E%7B%20%5Cfrac%7Bm%7D%7Bn%7D%7D%20%3D%20%28%20%5Csqrt%5Bn%5D%7Bx%7D%20%29%5E%7Bm%7D%20)
With fractional power, the denominator is the root and the numerator is the power of the term. When the denominator is 2, we usually only write the normal square symbol (√). Denominator other than 2, we usually write the value of the root, for example, the cubic root ∛
Option A - Incorrect

should equal to
Option B - Correct
does equal to

Option C - Incorrect

should equal to

Option D - Incorrect

should equal to
Answer:
(28 x 14) + (36 x 15)
Step-by-step explanation:
the x is multiplication
Area = Area of rectangle + area of semicircle
Area of rectangle = 5 x 1 = 5 m^2
area of semicircle = πD²/8 = 3.14 x 5² / 8 = 9. 8125
Area = 5 + 9.8125 = 14.8125 m^2
Answer:
-13
Step-by-step explanation:
Opposite of 9t = -9t
Taking the sum of 9t - 13 and -9t
Sum = 9t - 13 + (-9t)
Sum = 9t - 13 - 9t
Sum = 9t-9t - 13
Sum = -13
Hence the expression in standard form is -13
Answer:
1) (3 - 6x)(-8) = (-8)(3) - (-8)(6x) = -24 - (-48x) = -24 + 48x = 48x - 24
2) (-12)(2x - 3) = (-12)(2x) - (-12)(3) = -24x - (-36) = -24x + 36 = 36 - 24x
3) (10 - 2x)9 = (9)(10) - (9)(2x) = 90 - 18x
4) (-5)(11x - 2) = (-5)(11x) - (-5)(2) = -55x - (-10) = -55x + 10 = 10 - 55x
5) (1 - 9x)(-10) = (-10)(1) - (-10)(9x) = -10 - (-90x) = -10 + 90x = 90x - 10
6) (-6)(x + 8) = (-6)(x) + (-6)(8) = -6x + (-48) = -6x - 48
7) (-4 + 3x)(-8) = (-8)(-4) + (-8)(3x) = 32 + (-24x) = 32 - 24x
8) (-5)(1 - 11x) = (-5)(1) - (-5)(11x) = -5 - (-55x) = -5 + 55x = 55x -5
9) (-12x + 14)(-5) = (-5)(-12x) + (-5)(14) = 60x + (-70) = 60x - 70
Step-by-step explanation:
The distributive property is a(b + c) = ab + ac