1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
astraxan [27]
2 years ago
9

ILL MARK BRAINILEST !! 80 POINTS

Mathematics
1 answer:
mixas84 [53]2 years ago
6 0

\\ \rm\rightarrowtail y=x^2-10x+16

\\ \rm\rightarrowtail y=x^2-10x+16+9-9

\\ \rm\rightarrowtail y=x^2-10x+25-9

\\ \rm\rightarrowtail y=(x-5)^2-9

Vertex form

  • y=a(x-h)^2+k

So

vertex:-

  • (h,k)=(5,-9)
You might be interested in
HELP PLEASE 75 POINTS PLUS BRAINLIEST
Cerrena [4.2K]

Answer: for orange u reverse when u flip for green i answer

-4 < x _< 9

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Order the numbers by value.<br> LEAST to GREATEST<br><br>10<br>√99<br>√75<br>9<br>9.5​
beks73 [17]

Answer:

√75, 9, 9.5, √99, 10

Step-by-step explanation:

that's what I got

4 0
3 years ago
Which of these equations have no solution? Check all that apply.
stealth61 [152]

Answer:

if u need help go to math  way

Step-by-step explanation:

math   way  is a good way to get the steps and answer to ur problem!

4 0
3 years ago
What is the value of f(g(1))​
jeka57 [31]

Answer: 1

Step-by-step explanation:

All you had to do was multiply g by 1 so f(g(1)) as a value is 1

8 0
3 years ago
<img src="https://tex.z-dn.net/?f=prove%20that%5C%20%20%5Ctextless%20%5C%20br%20%2F%5C%20%20%5Ctextgreater%20%5C%20%5Cfrac%20%7B
inysia [295]

\large \bigstar \frak{ } \large\underline{\sf{Solution-}}

Consider, LHS

\begin{gathered}\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {sec}^{2}x - {tan}^{2}x = 1 \: \: }} \\ \end{gathered}  \\  \\  \text{So, using this identity, we get} \\  \\ \begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - ( {sec}^{2}\theta - {tan}^{2}\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {x}^{2} - {y}^{2} = (x + y)(x - y) \: \: }} \\ \end{gathered}  \\

So, using this identity, we get

\begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - (sec\theta + tan\theta )(sec\theta - tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

can be rewritten as

\begin{gathered}\rm\:=\:\dfrac {(\sec \theta + tan\theta ) - (sec\theta + tan\theta )(sec\theta -tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac {(\sec \theta + tan\theta ) \: \cancel{(1 - sec\theta + tan\theta )}} { \cancel{ \tan \theta - \sec \theta + 1} } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:sec\theta + tan\theta \\\end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1}{cos\theta } + \dfrac{sin\theta }{cos\theta } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1 + sin\theta }{cos\theta } \\ \end{gathered}

<h2>Hence,</h2>

\begin{gathered} \\ \rm\implies \:\boxed{\sf{  \:\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } = \:\dfrac{1 + sin\theta }{cos\theta } \: \: }} \\ \\ \end{gathered}

\rule{190pt}{2pt}

5 0
3 years ago
Other questions:
  • Omari drives a car that gets 18 miles per gallon of gasoline. The car's gasoline tank holds 15 gallons. The distance Omari drive
    7·1 answer
  • Every Term is <br><br> A. A constant<br> B. An Expression<br> C. A Variable
    13·1 answer
  • Given P(E or F) = 0.16, P(E) = 0.12, and P(F) = 0.17, what is P(E and F)?
    12·1 answer
  • Amanda plans to run eight laps around the track. each lap is 100 yards. so far Amanda has run 240 yards. what percentage of the
    6·1 answer
  • What is the residual of a week in which a barrel of crude oil costs $60 and a barrel of jet fuel costs $78?
    5·1 answer
  • 2/7 divided by 6, fastest answer (and correct) gets brainest.
    11·2 answers
  • If using the method of completing the square to solve the quadratic equation
    6·1 answer
  • Use the table definitions of H(t) and r(t) shown below to find (H o r)(3.0)
    15·1 answer
  • Who's up for actually helping me with this?
    9·1 answer
  • use the order of operations to simplify the left side of the inequality below. What values of x make the inequality a true state
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!