Answer:
negative s will equal -16
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.
We know the total tickets sold = 400.
Let x be the number of adult tickets sold.
That means 400 - x is the number of student tickets.
The revenue from adult tickets will be $3 * x, which we can call 3x.
The revenue from student ticks will be $2 * (400 - x), or 800 - 2x.
The total revenue is $1050, so that means:
3x + (800 - 2x) = 1050.
Removing the parentheses:
3x + 800 - 2x = 1050
Subtracting 800 from both sides:
3x - 2x = 250
Simplifying the left side:
x = 250, which is the number of adult tickets.
400-x = student tickets = 400-250 = 150.
ALWAYS check!
In this case, check the revenue:
3x = 3(250) = 750
2(150) = 300
750 + 300 = 1050. Check!
Solution:
<u>Note that:</u>
- 3x + 50 = 6x - 10 (Vertically opposite angles)
Simplify the equation to find x.
<u>Add 10 both sides.</u>
- 3x + 50 = 6x - 10
- => 3x + 50 + 10 = 6x - 10 + 10
- => 3x + 60 = 6x
<u>Subtract 3x both sides.</u>
- 3x + 60 = 6x
- => 3x - 3x + 60 = 6x - 3x
- => 60 = 3x
<u>Divide 3 both sides.</u>
- 60 = 3x
- => 60/3 = 3x/3
- => x = 20
Answer: A. ![\left[\begin{array}{ccc}29&13\\13&10\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D29%2613%5C%5C13%2610%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
The question is asking us to find the product of the matrices. The key difference is the second A has a little <em>T</em> in the exponent. This <em>T</em> means transpose. You multiply A by the transpose of A. To find the transpose, you turn the rows into columns.
![A^T=\left[\begin{array}{ccc}5&3\\2&-1\\\end{array}\right]](https://tex.z-dn.net/?f=A%5ET%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%263%5C%5C2%26-1%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Now that we have our transpose, we can multiply the matrices.
![\left[\begin{array}{ccc}5&2\\3&-1\\\end{array}\right] \left[\begin{array}{ccc}5&3\\2&-1\\\end{array}\right] =\left[\begin{array}{ccc}5*5+2*2&5*3+2(-1)\\3*5+2(-1)&3*3+(-1)(-1)\\\end{array}\right] =\left[\begin{array}{ccc}29&13\\13&10\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%262%5C%5C3%26-1%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%263%5C%5C2%26-1%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%2A5%2B2%2A2%265%2A3%2B2%28-1%29%5C%5C3%2A5%2B2%28-1%29%263%2A3%2B%28-1%29%28-1%29%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D29%2613%5C%5C13%2610%5C%5C%5Cend%7Barray%7D%5Cright%5D)