Answer:
There is an 8.22% probability that a randomly selected person has a birthday in November.
Step-by-step explanation:
The theoretical method to find the probability is the division of the number of desired outcomes by the number of total outcomes.
A randomly selected person has a birthday in November
There are 365 days in a year, so the number of total outcomes is 365.
There are 30 days in november, so the number of desired outcomes is 30.
So the probability is

There is an 8.22% probability that a randomly selected person has a birthday in November.
Simply the answer would be .38 if this is not correct then i failed
Answer:
B) 12.5 ft
Step-by-step explanation:
set up a proportion of inches/feet equals inches/feet
let 'h' = height of sign
5.4/18 = 3.75/h
cross-multiply:
5.4h = 67.5
h = 12.5
The equation is derived from the conservation of energy, specifically from potential energy stored at a given height in a gravitational field.
When potential energy is completely converted to kinetic energy you have:
(mv^2)/2=mgh divide both sides by the mass m
v^2/2=gh multiply both sides by 2
v^2=2gh take the square root of both sides
v=√(2gh) and working with imperial units for acceleration due to gravity, g=-32ft/s^2
v=√(-64h) but the change of h as it falls is negative h so
v=-√(64h) so if an object falls from a height of 88ft we have:
v=-√(64*84)
v=-√5376
v≈-73.32 ft/sec (to the nearest hundredth of a foot per second)
Note that this is the velocity, it is negative 73.32 ft/sec.
The question inadvertently asked for velocity and provided answers for SPEED. Velocity is a vector and has both magnitude and direction, whereas speed just has magnitude.
So its final speed is 73.32 ft/sec
So if they actually wanted velocity none of their answers is correct :P