(cube root of 5) * sqrt(5)
--------------------------------- = ?
(cube root of 5^5)
This becomes easier if we switch to fractional exponents:
5^(1/3) * 5^(1/2) 5^(1/3 + 1/2) 5^(5/6)
------------------------ = --------------------- = ------------- = 5^[5/6 - 5/3]
[ 5^5 ]^(1/3) 5^(5/3) 5^(5/3)
Note that 5/6 - 5/3 = 5/6 - 10/6 = -5/6.
1
Thus, 5^[5/6 - 5/3] = 5^(-5/6) = --------------
5^(5/6)
That's the correct answer. But if you want to remove the fractional exponent from the denominator, do this:
1 5^(1/6) 5^(1/6)
---------- * ------------- = -------------- (ANSWER)
5^(5/6) 5^(1/6) 5
Answer:
Cube
Step-by-step explanation:
It makes a cube
Answer:
The profits for firma A and B will decrease.
Step-by-step explanation:
Oligopoly by definition "is a market structure with a small number of firms, none of which can keep the others from having significant influence. The concentration ratio measures the market share of the largest firms".
If the costs remain the same for both companies and both firms decrease the prices then we will have a decrease of profits, we can see this on the figure attached.
We have an equilibrium price (let's assume X) and when we decrease a price and we have the same level of output the area below the curve would be lower and then we will have less profits for both companies.
Answer:
√x
Step-by-step explanation:
First, simplify -3⁄6 to -½. Next, according to the Negative Exponential Rule, move the denominator to the numerator to get x¹\²:
bⁿ = 1\b⁻ⁿ
Then, according to the Definition of Rational Exponents [part I], rewrite this as a radical, which in this case would be √x. This is when your numerator is 1:
ⁿ√aᵐ = aᵐ\ⁿ
If you are ever in need of assistance, do not hesitate to let me know by subscribing to my You-Tube channel [USERNAME: MATHEMATICS WIZARD], and as always, I am joyous to assist anyone at any time.
**I have a video that explains all six exponential rules. It is titled "Six Exponential Procedures". I encourage you to watch the video and gain alot more knowledge from it, so you can better understand the concept.