Answer:
Value of h greater than 5.4 will make inequality false.
Step-by-step explanation:
This question is incomplete; here is the complete question.
The Jones family has saved a maximum of $750 for their family vacation to the beach. While planning the trip, they determine that the hotel will average $125 a night and tickets for scuba diving are $75. The inequality can be used to determine the number of nights the Jones family could spend at the hotel 750 ≥ 75 + 125h. What value of h does NOT make the inequality true?
From the given question,
Per night expense (expected) = $125
If Jones family stays in the hotel for 'h' days then total expenditure on stay = $125h
Charges for scuba diving = $75
Total charges for stay and scuba diving = $(125h + 75)
Since Jones family has saved $750 for the vacation trip so inequality representing the expenses will be,
125h + 75 ≤ 750
125h ≤ 675
h ≤ 
h ≤ 5.4
That means number of days for stay should be less than equal to 5.4
and any value of h greater than 5.4 will make the inequality false.
H is greater than or equal to 8
Answer: -4
Explanation:
f(4) = 4(4) - 20
f(4) = 16 - 20
f(4) = -4
Answer:
n = 45
Step-by-step explanation:
Rearrange:
Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :
2+2*(4+3)+4+4*n-(200)=0
Step 1 :
Pulling out like terms :
-180 + 4n = 4 • (n - 45)
Equation at the end of step 1 :
Step 2 :
Equations which are never true :
2.1 Solve : 4 = 0
This equation has no solution.
A a non-zero constant never equals zero.
Solving a Single Variable Equation :
2.2 Solve : n-45 = 0
Add 45 to both sides of the equation :
n = 45
One solution was found :
n = 45
Processing ends successfully
plz mark me as brainliest :)
Answer:
The c statement is not true.
Step-by-step explanation:
We need to check every statement to determine which one is false.
a. The old tax rate was 6% and the new one is 18%. The difference between the new and the old one will give us how much it's been increased. So 18-6=12, meaning the tax has increased 12%, so this statement is true.
b. If we multiply by 3 the old tax rate we get 6x3=18, which is the same as the new tax rate, so this statement is also true.
c. Increasing the tax rate 100% would mean multiplying by 2, since 100% is the same as the number, so adding that to the same number would double the amount. By the same logic, increasing it 200% would be the same as multiplying it by 3, and by 4 with a 300% increase. Since we already determined that the new tax was 3 times the old one, this statement is false, and the d. statement is true.