1.3
You subtract 3.2 from 1.9 ; which gives you 1.3
Arc DB will also measure 34 degrees.
Answer:
Quadrilateral ABCD is not a square. The product of slopes of its diagonals is not -1.
Step-by-step explanation:
Point A is (-4,6)
Point B is (-12,-12)
Point C is (6,-18)
Point D is (13,-1)
Given that the diagonals of a square are perpendicular to each other;
We know that the product of slopes of two perpendicular lines is -1.
So, slope(m) of AC × slope(m) of BD should be equal to -1.
Slope of AC = (Change in y-axis) ÷ (Change in x-axis) = (-18 - 6) ÷ (6 - -4) = -24/10 = -2.4
Slope of BD = (Change in y-axis) ÷ (Change in x-axis) = (-1 - -12) ÷ (13 - -12) = 11/25 = 0.44
The product of slope of AC and slope of BD = -2.4 × 0.44 = -1.056
Since the product of slope of AC and slope of BD is not -1 hence AC is not perpendicular to BD thus quadrilateral ABCD is not a square.
9514 1404 393
Answer:
(x +6)^2 +(y -10)^2 = 225
Step-by-step explanation:
The standard form equation for a circle is ...
(x -h)^2 + (y -k)^2 = r^2
where the center is (h, k) and the radius is r.
The center of a circle is the midpoint of any diameter. The midpoint between two points is the average of their coordinates.
((-15, -2) +(3, 22))/2 = (-15+3, -2+22)/2 = (-6, 10)
The radius can be found using the distance formula, or by simply putting one of the given points in the equation for the circle to see what the constant (r^2) needs to be.
(x -(-6))^2 +(y -10)^2 = (-15-(-6))^2 +(-2-10)^2
(x +6)^2 +(y -10)^2 = 81 +144 = 225
The equation of the circle is ...
(x +6)^2 +(y -10)^2 = 225