Answer:
Messenger RNA (mRNA) is a large family of RNA molecules that convey genetic information from DNA to the ribosome.
Explanation:
Climate change refers to significant changes in global temperature, precipitation, wind patterns and other measures of climate that occur over several decades or longer.
The seas are rising. The foods we eat and take for granted are threatened. Ocean acidification is increasing. Ecosystems are changing, and for some, that could spell the end of certain regions the way we have known them. And while some species are adapting, for others, it’s not that easy.
Evidence suggests many of these extreme climate changes are connected to rising levels of carbon dioxide and other greenhouse gases in the Earth’s atmosphere — more often than not, the result of human activities.
Climate change, therefore, is a change in the typical or average weather of a region or city. This could be a change in a region's average annual rainfall, for example. Or it could be a change in a city's average temperature for a given month or season. Climate change is also a change in Earth's overall climate.
Hope this helps you:)
Earth's atmosphere is 78%<span> nitrogen </span>21%<span> oxygen, </span>0.9%<span> argon, and </span>0.03%<span> carbon dioxide with very small percentages of other elements.
hope it helps</span>
Answer:
If an inhibitory synapse fires at the same time and at the same distance from the initial segment as an excitatory synapse of the same intensity there will be no changes in the potential in the firing zone.
Explanation:
Under normal conditions, the transmembrane potential depends on the ionic charges present in the intracellular and extracellular spaces. The extracellular space load is usually positive and in the cytoplasm is negative.
- <u>Depolarization</u> occurs by opening ion channels that allow sodium to enter the cell, making the intracellular space more positive.
- An opening of potassium channels releases this ion to the extracellular space, leading to <u>hyperpolarization</u>.
An excitatory synapse is one capable of depolarizing a cell and boosting the production of action potential, provided it is capable of reaching the threshold of said potential.
On the other hand, an inhibitory synapse is able to hyperpolarize the cell membrane and prevent an action potential from originating, so that they can inhibit the action of an excitatory synapse.
The interaction between two synapses, one excitatory and one inhibitory, -called synapse summation- will depend on the strength that each of them possesses. In this case, the intensity of both synapses being the same, there will be no changes in the membrane potential in the firing zone.
Learn more:
Excitatory and inhibitory postsynaptic potentials brainly.com/question/3521553