<h3>I'll teach you how to solve (1/5x-4+2y)+(2/5x+5-4y)</h3>
-----------------------------------------------------------------
(1/5x-4+2y)+(2/5x+5-4y)
Remove parentheses:
1/5x-4+2y + 2/5x+5-4y
Group like terms:
1/5x+2/5x+2y-4y-4+5
Add similar elements:
3/5x+2y-4y-4+5
Add similar elements:
3/5x-2y-4+5
Multiply:
3x/5-2y-4+5
Add subtract the numbers:
3x/5+1-2y
Your Answer Is 3x/5+1-2y
plz mark me as brainliest :)
The exact value for cos(pi/16) would be :
cos (pi/16) = +/- √1+cosa/2
cos (pi/4) = sqrt2/2
Hope this helps
Answer:
get a life and do your own workget a life and do your own workget a life and do your own workget a life and do your own workget a life and do your own workget a life and do your own workget a life and do your own workget a life and do your own work
Step-by-step explanation:
Answer:
150
Step-by-step explanation:
15*10
Lets get rid of the 0 for now
15*1
That is 15 added to itself 0 times so it is 15
Now lets put the 0 back
and we will get
150

- Given - <u>a </u><u>cone</u><u> </u><u>with </u><u>volume</u><u> </u><u>7</u><u>6</u><u>9</u><u>?</u><u>3</u><u> </u><u>ft³</u><u> </u><u>,</u><u> </u><u>having </u><u>a </u><u>height </u><u>of </u><u>1</u><u>5</u><u> </u><u>ft</u>
- To calculate - <u>radius </u><u>of </u><u>the </u><u>cone</u>
We know that ,

<u>substituting</u><u> </u><u>the </u><u>values </u><u>in </u><u>the </u><u>formula</u><u> </u><u>stated </u><u>above </u><u>,</u>

therefore ,
<u>radius </u><u>=</u><u> </u><u>7</u><u> </u><u>cm</u>
hope helpful ~