Answer:
C
Explanation:
When plant cells take in water, the vacuole swells. A swollen vacuole indicates the plant cell has all the water it needs. This suggests that the plant is taking in water and is maintaining optimum conditions. This is an example of homeostasis.
If the cells burst apart, as in A and E, this would suggest the cell is not properly maintaining homeostasis, as the cell bursting suggests something has gone badly wrong. This suggests the cell has taken in too much water; the cell has not been able to maintain homeostasis and regulate water uptake to prevent this from happening.
In the reverse case, where the cells shrink apart (as in B), the cell would also not be properly maintaining homeostasis by failing to bring enough water into the cell to maintain a turgid state. This is also damaging for the cells.
Finally, D and E can also not be correct, because water can cross the cell membrane, and does not need to be pumped in or sent out by endocytosis.
- DNA and RNA are made up of monomers called nucleotides. - DNA and RNA both have 3 nitrogenous bases: Adenine, Cytosine and Guanine. - DNA and RNA both have a phosphate groups in their nucleotides. Sometimes called phosphoric acid.Feb 18, 2009
Dominant' traits will actually disappear faster if they are disadvantageous.
Think about it: if everyone who has even a single copy of a particular allele is at a disadvantage (manifests the phenotype, in this case six fingers), then even single copies are selected against.
In the case of recessive traits, selection occurs only against homozygous carriers, who may be very rare if the allele itself is rare.
A concrete example would be something like Tay-Sachs disease. If the allele that causes this were dominant, every carrier would die before adulthood, and it would occur only as a very rare de novo mutation. But because it is recessive, it persists for now; heterozygous carriers have no disadvantage.