1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Neko [114]
2 years ago
10

Find the domain and the range of {(1,7),(3,8),(0,4),(-1,4)}

Mathematics
1 answer:
jenyasd209 [6]2 years ago
6 0

Answer:

domain={1,3,0,-1}

range={7,8,4}

You might be interested in
Determine whether the function is periodic. If it is periodic, find the period.
puteri [66]

Answer:

none of them

f(x) = a \:  \sin(b + cx)  \\ t =  \frac{2\pi}{ |c| }  \\ t =  \frac{2\pi}{ |1| }  = 2\pi

this is the right answer

6 0
3 years ago
Lim n-> infinity [1/3 + 1/3² + 1/3³ + . . . .+ 1/3ⁿ]​
Verizon [17]

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]

Let we first evaluate

\rm :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }

Its a Geometric progression with

\rm :\longmapsto\:a = \dfrac{1}{3}

\rm :\longmapsto\:r = \dfrac{1}{3}

\rm :\longmapsto\:n = n

So, Sum of n terms of GP series is

\rm :\longmapsto\:S_n = \dfrac{a(1 -  {r}^{n} )}{1 - r}

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{1 - \dfrac{1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{3 - 1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{2}{3} } \bigg]

\bf\implies \:S_n = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Hence, </u>

\bf :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} } = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Therefore, </u>

\purple{\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to  \infty }\rm \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}\bigg[1 - 0 \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}

<u>Hence, </u>

\purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]} =  \frac{1}{2}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>Explore More</u></h3>

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga}}

8 0
3 years ago
Simplify the expression 8b - 8 - 7 - 10 + -4b + -10​
Alekssandra [29.7K]

Answer:

4b - 35

Step-by-step explanation:

8b - 8 - 7 -10-4b _ 10

8b - 35 - 4b  combie like trems

7 0
3 years ago
1 2/5m-3/5(2/3m+1)pls help
inysia [295]

Answer:  (10m-3)/5

Step-by-step explanation:

Convert 1 2/5 into an improper fraction

Simplify  5+25+2  to  7

Simplify 2/3m to 2m/3

Simplify 7/5m to 7m/5

Expand and remove the parenthesis

Collect the like terms

Simplify

4 0
2 years ago
Todd bought a guitar practice amplifier for $229.99 he paid $30 down and $25 a month for nine months what's his total cost
lana [24]
Wouldn't the total cost be the cost of the amp? Which is 229.99$
Doesn't matter how he paid it - he still had to pay that total amount
4 0
4 years ago
Read 2 more answers
Other questions:
  • PLEASE HELP! WILL REWARD BRAINLIEST TO BEST ANSWER WRITE DOWN INFORMATION. Create all four digit numbers that are divisible by 8
    10·1 answer
  • I need help on this
    5·2 answers
  • Please answer quickly!!!
    8·1 answer
  • Please help. Find the dimensions of the rectangle. The perimeter is given.
    14·2 answers
  • Solve the formula Ax+Bx = c for y
    8·1 answer
  • A corporation is considering a new issue of convertible bonds, mandagemnt belives that the offer terns will be founf attractiv b
    15·2 answers
  • Dan mixed 2 parts of milk and 3 parts of syrup to make a drink. How many parts of milk did Dan mix with each part of syrup?
    15·2 answers
  • Evaluate the following functions at x = 10 q(x)=x^2-2x+2​
    6·1 answer
  • If ED = 10 and DB = 3x – 8, what is the length of mc084-2.jpg?
    13·1 answer
  • What are the domain and range of f(x)=logx-5
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!