Answer:

Given expression is
![\rm :\longmapsto\:\displaystyle\lim_{n \to \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} } + \dfrac{1}{ {3}^{3} } + - - + \dfrac{1}{ {3}^{n} } \bigg]](https://tex.z-dn.net/?f=%5Crm%20%3A%5Clongmapsto%5C%3A%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%20%5Cinfty%20%7D%5Crm%20%5Cbigg%5B%5Cdfrac%7B1%7D%7B3%7D%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B2%7D%20%7D%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%2B%20%20-%20%20-%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7Bn%7D%20%7D%20%20%5Cbigg%5D)
Let we first evaluate

Its a Geometric progression with



So, Sum of n terms of GP series is

![\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 - {\bigg[\dfrac{1}{3} \bigg]}^{n} }{1 - \dfrac{1}{3} } \bigg]](https://tex.z-dn.net/?f=%5Crm%20%3A%5Clongmapsto%5C%3AS_n%20%3D%20%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5B%5Cdfrac%7B1%20-%20%20%7B%5Cbigg%5B%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7Bn%7D%20%7D%7B1%20-%20%5Cdfrac%7B1%7D%7B3%7D%20%7D%20%5Cbigg%5D)
![\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 - {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{3 - 1}{3} } \bigg]](https://tex.z-dn.net/?f=%5Crm%20%3A%5Clongmapsto%5C%3AS_n%20%3D%20%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5B%5Cdfrac%7B1%20-%20%20%7B%5Cbigg%5B%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7Bn%7D%20%7D%7B%5Cdfrac%7B3%20-%201%7D%7B3%7D%20%7D%20%5Cbigg%5D)
![\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 - {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{2}{3} } \bigg]](https://tex.z-dn.net/?f=%5Crm%20%3A%5Clongmapsto%5C%3AS_n%20%3D%20%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5B%5Cdfrac%7B1%20-%20%20%7B%5Cbigg%5B%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7Bn%7D%20%7D%7B%5Cdfrac%7B2%7D%7B3%7D%20%7D%20%5Cbigg%5D)
![\bf\implies \:S_n = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]](https://tex.z-dn.net/?f=%5Cbf%5Cimplies%20%5C%3AS_n%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D)
<u>Hence, </u>
![\bf :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} } + \dfrac{1}{ {3}^{3} } + - - + \dfrac{1}{ {3}^{n} } = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]](https://tex.z-dn.net/?f=%5Cbf%20%3A%5Clongmapsto%5C%3A%5Cdfrac%7B1%7D%7B3%7D%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B2%7D%20%7D%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%2B%20%20-%20%20-%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7Bn%7D%20%7D%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D)
<u>Therefore, </u>
![\purple{\rm :\longmapsto\:\displaystyle\lim_{n \to \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} } + \dfrac{1}{ {3}^{3} } + - - + \dfrac{1}{ {3}^{n} } \bigg]}](https://tex.z-dn.net/?f=%20%5Cpurple%7B%5Crm%20%3A%5Clongmapsto%5C%3A%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%20%5Cinfty%20%7D%5Crm%20%5Cbigg%5B%5Cdfrac%7B1%7D%7B3%7D%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B2%7D%20%7D%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%2B%20%20-%20%20-%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7Bn%7D%20%7D%20%20%5Cbigg%5D%7D)
![\rm \: = \: \displaystyle\lim_{n \to \infty }\rm \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%20%5Cinfty%20%7D%5Crm%20%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D)
![\rm \: = \: \rm \dfrac{1}{2}\bigg[1 - 0 \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Crm%20%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B1%20-%200%20%5Cbigg%5D)

<u>Hence, </u>
![\purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{n \to \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} } + \dfrac{1}{ {3}^{3} } + - - + \dfrac{1}{ {3}^{n} } \bigg]} = \frac{1}{2}}}](https://tex.z-dn.net/?f=%20%5Cpurple%7B%5Crm%20%3A%5Clongmapsto%5C%3A%5Cboxed%7B%5Ctt%7B%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%20%5Cinfty%20%7D%5Crm%20%5Cbigg%5B%5Cdfrac%7B1%7D%7B3%7D%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B2%7D%20%7D%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%2B%20%20-%20%20-%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7Bn%7D%20%7D%20%20%5Cbigg%5D%7D%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%7D%7D)
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
<h3>
<u>Explore More</u></h3>





Answer:
4b - 35
Step-by-step explanation:
8b - 8 - 7 -10-4b _ 10
8b - 35 - 4b combie like trems
Answer: (10m-3)/5
Step-by-step explanation:
Convert 1 2/5 into an improper fraction
Simplify 5+25+2 to 7
Simplify 2/3m to 2m/3
Simplify 7/5m to 7m/5
Expand and remove the parenthesis
Collect the like terms
Simplify
Wouldn't the total cost be the cost of the amp? Which is 229.99$
Doesn't matter how he paid it - he still had to pay that total amount