Answer:
ANSWER
15 square units.
EXPLANATION
This triangle has one of its height(altitudes) falling outside the triangle.
We determine the base using absolute value method. This is because the coordinates of R(-4,2)R(−4,2) and S(1,2)S(1,2) tell us that this line is horizontal. The y-values are constant.
Therefore |RS|=|1--4|∣RS∣=∣1−−4∣
\Rightarrow |RS|=|1+4|⇒∣RS∣=∣1+4∣
\Rightarrow |RS|=|5|⇒∣RS∣=∣5∣
\Rightarrow |RS|=5⇒∣RS∣=5
Also
The triangle is bounded between y=2y=2 and y=-4y=−4 .
Therefore the vertical height of interest,
|RT|=|-4-2|∣RT∣=∣−4−2∣
|RT|=|-6|∣RT∣=∣−6∣
|RT|=6∣RT∣=6
We can now find the area using the formula
Area=\frac{1}{2}base\times heightArea=21base×height
Area=\frac{1}{2}\times6 \times 5Area=21×6×5
Area=3 \times 5Area=3×5
Area=15Area=15 square units