Larger PyramidHeight 24 Volume 648
Pyramid Volume = (Area of the Base * Height) ÷ 3648 = Base Area * 24 / 3Base Area = 648 * 3 / 24Base Area = 648 / 8Base Area = 81Base Length = 9
a) The Scale Factor between the Small & Large PyramidLength - 3LATERAL Area - 9Volume - 27
Slant Height^2 = 4.5^2 + 24^2Slant Height^2 =
<span>
<span>
596.25
</span>
</span>
<span><span>Slant Height^2 = 24.4182308941
</span>
</span>
b)
Large Pyramid Area = (½ * Perimeter of Base * Slant Height) + Base AreaLarge Pyramid Area = (.5 * 36 * <span>24.4182308941) + 81
</span>Large Pyramid Area = 439.5281560938 + 81
Large Pyramid TOTAL Area =
<span>
<span>
520.5281560938
</span>
</span>
<span>Large Pyramid LATERAL Area =<span> 439.5281560938
</span>
</span>
**********************************************************************************c)
Smaller PyramidHeight 8Surface Area = 124
This pyramid has dimensions that are one third of the larger pyramid.Therefore, it has a base length of 3.Base Area = 9.
Its base perimeter would be 12.
Small Pyramid Volume = (Area of the Base * Height) ÷ 3Small Pyramid Volume = ( 9 * 8 ) / 3Small Pyramid Volume = 72 / 3
c) Small Pyramid Volume =24 cubic meters
d) Ratio of larger pyramid volume to smaller pyramid volume648 / 24 = 27The reason? Volume is a 3 dimensional quantity. The Larger pyramid is 3 times larger in terms of the base measurement.9 meters vs 3 meters - a factor of 3When we compare volumes, we have to cube this factor.3^3 = 27
Source : http://www.1728.org/volpyrmd.htm
If there is such a scalar function <em>f</em>, then



Integrate both sides of the first equation with respect to <em>x</em> :

Differentiate both sides with respect to <em>y</em> :


Integrate both sides with respect to <em>y</em> :

Plug this into the equation above with <em>f</em> , then differentiate both sides with respect to <em>z</em> :



Integrate both sides with respect to <em>z</em> :

So we end up with

Answer: (x)(x)(x) = x^3.
Step-by-step explanation:
x^3 means multiply x by it's self 3 times.
Hope this helps..
Answer:
A = bh/2
39 = b*3/2
39*2 = b*3/2 * 2
78 = b*3
78/3 = b*3/3
26 = b.
Alors, la grande base est 26 cm et le petit base serait 26/3 = 8.67 cm arrondi.