After 24 hours, 35.4% of the initial dosage remains on the body.
<h3>What percentage of the last dosage remains?</h3>
The exponential decay is written as:

Where A is the initial value, in this case 2.8mg.
k is the constant of decay, given by the logarithm of 2 over the half life, in this case, is:

Replacing all that in the above formula, and evaluating in x = 24 hours we get:

The percentage of the initial dosage that remains is:

If you want to learn more about exponential decays:
brainly.com/question/11464095
#SPJ1
If you are asking how much money would he have after 20 jobs while earning 15$ for each, here is the answer and explanation.
llia will have 300$ after 20 jobs. If he gets 15$ for each job then 1 is 15$, 2 is 30$, and so on. So we multiply 20 jobs x 15$ and that gives us 300$. I Hope this helps
Answer:
Step-by-step explanation:
<u>Let the number be x</u>
- 380% of x is 99
- x*3.8 = 99
- x = 99/3.8
- x = 26 rounded to the nearest whole number
Y=4x is the answers because four times three equals 12 so it works out