Answer:
The percentage of people should be seen by the doctor between 13 and
17 minutes is 68% ⇒ 2nd term
Step-by-step explanation:
* Lets explain how to solve the problem
- Wait times at a doctor's office are typically 15 minutes, with a standard
deviation of 2 minutes
- We want to find the percentage of people should be seen by the
doctor between 13 and 17 minutes
* To find the percentage we will find z-score
∵ The rule the z-score is z = (x - μ)/σ , where
# x is the score
# μ is the mean
# σ is the standard deviation
∵ The mean is 15 minutes and standard deviation is 2 minutes
∴ μ = 15 , σ = 2
∵ The people should be seen by the doctor between 13 and
17 minutes
∵ x = 13 and 17
∴ z = 
∴ z = 
- Lets use the standard normal distribution table
∵ P(z > -1) = 0.15866
∵ P(z < 1) = 0.84134
∴ P(-1 < z < 1) = 0.84134 - 0.15866 = 0.68268 ≅ 0.68
∵ P(13 < x < 17) = P(-1 < z < 1)
∴ P(13 < x < 17) = 0.68 × 100% = 68%
* The percentage of people should be seen by the doctor between
13 and 17 minutes is 68%
Answer:
55miles per hour
Step-by-step explanation:
The answer is the second option, 37/11.
3/4/11 = 3 wholes of 11 = 33.
add the remaining 4 to 33 and u get 37. thus answer is 37/11
Answer:
0.93
Step-by-step explanation:
You’re going to be adding by .05
so the first one would be 5.86 and the second one would be 6.01
hopefully this helps!