The value of A is 3 and the value of B is 2.
<h3>
Whole Numbers</h3>
They are the numbers represented by positive real numbers where the fractions and decimal numbers are not included.
The question gives:
A and B are whole numbers;
Thus, you need to find A and B for these conditions.
When we calculated the Least Common Multiple ( LCM ) between 3 and 11, we can rewrite the equation as:

Thus, we have:
(1)
From this condition, for that A is a whole number, then 31-11B >0.
Then,

In this case, for that B should be a whole number, B can be 0,1 and 2.
Now, you should replace probable numbers for B in equation (1). The value of B will be the number from that you will find the whole number for A. See below.
For B=0, you have
. In this case, A is not a whole number. Then, B can't be 0 (zero).
For B=1, you have
. In this case, A is not a whole number. Then, B can't be 1 (one).
For B=2, you have
. In this case, A is a whole number (3). Then, B can be 2 (two).
Let's replace this information in the given equation in your question.
Hence, A=3 and B=2.
Read more about the whole number here:
brainly.com/question/19896422