1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alisiya [41]
2 years ago
13

find the area of the trapezium whose parallel sides are 25 cm and 13 cm The Other sides of a Trapezium are 15 cm and 15 CM​

Mathematics
1 answer:
Snezhnost [94]2 years ago
6 0

\huge\underline{\red{A}\blue{n}\pink{s}\purple{w}\orange{e}\green{r} -}

  • Given - <u>A </u><u>trapezium</u><u> </u><u>ABCD </u><u>with </u><u>non </u><u>parallel </u><u>sides </u><u>of </u><u>measure </u><u>1</u><u>5</u><u> </u><u>cm </u><u>each </u><u>!</u><u> </u><u>along </u><u>,</u><u> </u><u>the </u><u>parallel </u><u>sides </u><u>are </u><u>of </u><u>measure </u><u>1</u><u>3</u><u> </u><u>cm </u><u>and </u><u>2</u><u>5</u><u> </u><u>cm</u>

  • To find - <u>Area </u><u>of </u><u>trapezium</u>

Refer the figure attached ~

In the given figure ,

AB = 25 cm

BC = AD = 15 cm

CD = 13 cm

<u>Construction</u><u> </u><u>-</u>

draw \: CE \: \parallel \: AD \:  \\ and \: CD \: \perp \: AE

Now , we can clearly see that AECD is a parallelogram !

\therefore AE = CD = 13 cm

Now ,

AB = AE + BE \\\implies \: BE =AB -  AE \\ \implies \: BE = 25 - 13 \\ \implies \: BE = 12 \: cm

Now , In ∆ BCE ,

semi \: perimeter \: (s) =  \frac{15 + 15 + 12}{2}  \\  \\ \implies \: s =  \frac{42}{2}  = 21 \: cm

Now , by Heron's formula

area \: of \: \triangle \: BCE =  \sqrt{s(s - a)(s - b)(s - c)}  \\ \implies \sqrt{21(21 - 15)(21 - 15)(21 - 12)}  \\ \implies \: 21 \times 6 \times 6 \times 9 \\ \implies \: 12 \sqrt{21}  \: cm {}^{2}

Also ,

area \: of \: \triangle \:  =  \frac{1}{2}  \times base \times height \\  \\\implies 18 \sqrt{21} =  \: \frac{1}{\cancel2}  \times \cancel12  \times height \\  \\ \implies \: 18 \sqrt{21}  = 6 \times height \\  \\ \implies \: height =  \frac{\cancel{18} \sqrt{21} }{ \cancel 6}  \\  \\ \implies \: height = 3 \sqrt{21}  \: cm {}^{2}

<u>Since </u><u>we've </u><u>obtained </u><u>the </u><u>height </u><u>now </u><u>,</u><u> </u><u>we </u><u>can </u><u>easily </u><u>find </u><u>out </u><u>the </u><u>area </u><u>of </u><u>trapezium </u><u>!</u>

Area \: of \: trapezium =  \frac{1}{2}  \times(sum \: of \:parallel \: sides) \times height \\  \\ \implies \:  \frac{1}{2}  \times (25 + 13) \times 3 \sqrt{21}  \\  \\ \implies \:  \frac{1}{\cancel2}  \times \cancel{38 }\times 3 \sqrt{21}  \\  \\ \implies \: 19 \times 3 \sqrt{21}  \: cm {}^{2}  \\  \\ \implies \: 57 \sqrt{21}  \: cm {}^{2}

hope helpful :D

You might be interested in
Write an equation for the line passing through the given point and having the given slope.
Nadusha1986 [10]

Answer:  The equation, in "slope-intercept form" ; is:

________________________________________________

                   →   " y  =   x  +  4  " .

________________________________________________

Step-by-step explanation:

________________________________________________

Use the formula for linear equations;  written in "point-slope format" ;

which is:

      y −  y₁  = m( x −  x₁ )  ;

We are given the slope, "m" ;  has a value of:  "1 " ;  

           that is;  " m = 2 " .

________________________________________________

  We are given the coordinates to 1 (one) point on the line; in which the coordinates are in the form of :

    " ( x₁ , y₁ ) " ;  

→   that given point is:  "(10, 6)" ;  

            in which:  x₁ =  10 ;

                             y₁  =  6 .

→ Given:  The slope, "m" equals "1" ;  ________________________________________________

Let's plug our known values into the formula:

    →  "  y  −  y₁  = m( x − x₁ ) "  ;

_______________________________________________

    →   As follows:

    →   " y  −  10  = 1(x − 6) ;

______________________________________________

Now, focus on the "right-hand side of the equation" ;

    →    1(x  −  6) = ? ;   Simplify.

______________________________________________

Note the "distributive property" of multiplication:

            →  a(b + c) =  ab   +   ac ;

As such:  " 1(x  −  6) =  (1*x)  +  (1 * -6) " ;

                             =  1x   + (-6) ;

                             =   x  −  6 ;

[Note that:  " 1 x = 1 * x = x " ;

[Note that   " + (-6) "  =  " ( " − 6 " ) .] ;  

                 →  {since:  "Adding a negative" is the same as:

                                  "subtracting a positive."} ;

________________________________________________

          Now, let us bring down the "left-hand side of the equation" ; &

rewrite the entire equation; as follows:

________________________________________________

                           →   "  y  −  10  =   x  −  6 " ;  

________________________________________________

Note:  We want to rewrite the equation in "slope-intercept form" ;

           that is;  " y = mx + b "  ;

                 in which:  "y" ; stands alone as a single variable on the "left-hand side" of the equation;  with "no coefficients" [except for the "implied coefficient" of " 1 "} ;

                                 "m" is the coefficient of "x" ;

                                 and the "slope of the line" ;  

          Note that "m" may be a "fraction or decimal" ; and may be "positive or negative.

            If the slope is "1" ; (that is "1 over 1" ; or: "\frac1}{1}" ;

then,  " m = 1 " ;  and we can write " 1x " as simply "x" ; since the implied coefficient is "1" ;  

               →  since " 1" , multiplied by any value {in our case, any value for "x"} , equals that same value.

________________________________________________

       "b"  refers to the "y-intercept" of the graph of the equation;  

           that is; the "y-value" of the point at which the graphed line of the equation crosses the "y-axis" ;  

           that is, the "y-value" of the coordinates of the point at which the graphed line of the equation crosses the "y-axis" ;

           that is, the ["y-value" of the]  y-intercept" .  

Note that the value of "b" may be positive or negative, and may be a decimal or fraction.

  If the value for "b" is negative, the equation can be written in the form:

          " y = mx - b " ;

    {since:  " y = mx + (-b) "  is a bit tedious .}

          If the y-intercept is "0" ; (i.e. the line crosses the y-axis at the origin, at point:  " (0,0) " ;  

then we simply write the equation as:  "y = mx " ;  

                                ________________________________________________

So;  we have:              →   " y  − 10  =  x  −  6 " ;  

________________________________________________

       →   We want to rewrite our equation in slope-intercept form,

that is;  " y = mx + b " ;  as explained above.

 

We can add "10" to each side of the equation ; to isolation the "y" on the "left-hand side" of the equation:

           →  " y  −  10  + 10  =  x  − 6  +  10 " ;

to get:

           →  " y  =  x  +  4 " ;

________________________________________________

          →  which is our answer.

________________________________________________

Note:  This answer:  " y = x + 4 " ;

                  →  is written in the "slope-intercept format";  

                     →   " y = mx +  b "  ;

  in which:  "y" is isolated as a single variable on the "left-hand side of the equation" ;

                   The slope of the equation is "1" ; or an implied value of "1" ;

    that is;   " m  = 1 " ;  

                   "b  =  4 " ;  

         →  {that is;  the "y-value" of the  "y-intercept" —  "(0, 4)" — of the graph of the equation is:  "4 ".} .

________________________________________________

Hope this answer is helpful!

          Best wishes to you in your academic pursuits

               —  and within the "Brainly" community!

________________________________________________      

6 0
3 years ago
Johnny reflects ∆ABC across the y axis and then again across the x axis.
kvasek [131]
True, Sally is correct.
8 0
3 years ago
An object is dropped from 39 ft below the tip of the pinnacle atop of 363 ft tall building. The height h of the object after t s
Ksenya-84 [330]

Answer:

4.5 seconds pass before reaching the ground

Step-by-step explanation:

The height of the object is given by the following equation:

h(t) = -16t^{2} + 324

How many seconds pass before reaching the ground

It hits the ground when h(t) = 0. So

h(t) = 0

-16t^{2} + 324 = 0

16t^{2} = 324

t^{2} = \frac{324}{16}

t = \pm \sqrt{\frac{324}{16}}

t = \pm 4.5

There are no negative instants of time, so only the positive answer interests to us.

4.5 seconds pass before reaching the ground

5 0
3 years ago
What is the percent change from 120 to 80
Mice21 [21]

Answer:

1/3=33.3%

Step-by-step explanation:

(120-80)/120=40/120=1/3

8 0
3 years ago
Read 2 more answers
one serving of crackers is 3/10 of the whole box of crackers. bella ate 3 servings last week. what fractonof the box did she eat
Blizzard [7]
Well, if she ate 3 servings and one serving equals 3/10 then Bella ate 9/10 of the box of crackers.
6 0
4 years ago
Other questions:
  • Clyde made a model of his favorite type of car. his model is 6 inches long, and the actual length of the car is 15 feet. what ra
    6·1 answer
  • What are reasons A and B in the proof?
    9·1 answer
  • Each plotted plant costs$4.75, each shrub costs$14.50 .
    13·1 answer
  • What is the value of the expression when a = 4?<br><br><br> 2a^3
    8·1 answer
  • PLEASE HELP ME!!!! I WILL MARK THE BRAINIEST TO WHOEVER ANSWERS THIS CORRECTLY!!!!!!!!
    9·1 answer
  • Im dumb and need help​
    6·1 answer
  • Monique is going to give away 35% of her orange harvest to her neighbors. If she picked 480 oranges, how many will she be giving
    8·1 answer
  • Use the slope-intercept form of the linear equation to write the equation of the line with the given slope and y-intercept.
    9·1 answer
  • The age structure of a population is often represented by a pyramid. What does an age structure pyramid with a broad base and a
    9·1 answer
  • What's the equation of the line shown above?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!