Answer:
The solution of given equation is ( - 1 + 2 i ) , ( - 1 - 2 i )
Step-by-step explanation:
Given equation as :
3 x² + 6 x +15 = 0
The value of x fro the quadratic equation a x² + b x + c = 0 is obtained as
x =
So , from given eq , the value of x is now obtain as
x =
Or, x =
Or, x =
∴ x = ( - 1 + 2 i ) , ( - 1 - 2 i )
Hence The solution of given equation is ( - 1 + 2 i ) , ( - 1 - 2 i ) Answer
You factor the numerator and denominator and cancel the common factors. So maybe that should help you
C) 94 degree's
All triangles add up to 180 degree's
180 - ( 52+34) = 94
- R3KTFORGOOD ☕
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7
Answer:
157 inches squared
Step-by-step explanation:
Divide the figure into smaller figures (see image for one way):
Then, find the area of each figure. In my example:
= (4x5)+(5x12)+(11x7)
= 20+60+77
= 80+77
= 157 inches squared