<u>Answer</u>
1
<u>Explanation</u>
The general equation of a wave is ;
y = a sin(kX+Ф)
Where a represent the amplitude, 360/k represent the period of the wave and Ф represent the phase angle.
∴ In the equation y = 1 sin 2x,
Amplitude = 1
Slope of 4 means you add 4 to the y and 1 to the x so the answer is (-1,9)
Y=2(given)
-2=12x-3+10
-2=12x+7
-9=12x,
-3/4=x
Answer:
<u>Given</u>: base = 10.4ft, height = 12.5
Area of octagon = 8(1/2 × b × h)
- 8(1/2 × 10.4 × 12.5)
- 520ft²
Volume of pool = 520ft² × 3ft
Now, 1 cubic ft takes 7.5 gallons to fill.
Therefore, 1560 cubic ft takes,
So, <u>Correct choice</u> - [D] 11,700.
![\bf cos\left[tan^{-1}\left(\frac{12}{5} \right)+ tan^{-1}\left(\frac{-8}{15} \right) \right]\\ \left. \qquad \qquad \quad \right.\uparrow \qquad \qquad \qquad \uparrow \\ \left. \qquad \qquad \quad \right.\alpha \qquad \qquad \qquad \beta \\\\\\ \textit{that simply means }tan(\alpha)=\cfrac{12}{5}\qquad and\qquad tan(\beta)=\cfrac{-8}{5} \\\\\\ \textit{so, we're really looking for }cos(\alpha+\beta)](https://tex.z-dn.net/?f=%5Cbf%20cos%5Cleft%5Btan%5E%7B-1%7D%5Cleft%28%5Cfrac%7B12%7D%7B5%7D%20%20%5Cright%29%2B%20tan%5E%7B-1%7D%5Cleft%28%5Cfrac%7B-8%7D%7B15%7D%20%20%5Cright%29%20%5Cright%5D%5C%5C%0A%5Cleft.%20%5Cqquad%20%20%5Cqquad%20%20%5Cquad%20%20%20%5Cright.%5Cuparrow%20%5Cqquad%20%5Cqquad%20%20%5Cqquad%20%20%5Cuparrow%20%5C%5C%0A%5Cleft.%20%5Cqquad%20%20%5Cqquad%20%20%5Cquad%20%20%20%5Cright.%5Calpha%20%5Cqquad%20%5Cqquad%20%20%5Cqquad%20%20%5Cbeta%0A%5C%5C%5C%5C%5C%5C%0A%5Ctextit%7Bthat%20simply%20means%20%7Dtan%28%5Calpha%29%3D%5Ccfrac%7B12%7D%7B5%7D%5Cqquad%20and%5Cqquad%20tan%28%5Cbeta%29%3D%5Ccfrac%7B-8%7D%7B5%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ctextit%7Bso%2C%20we%27re%20really%20looking%20for%20%7Dcos%28%5Calpha%2B%5Cbeta%29)
now.. hmmm -8/15 is rather ambiguous, since the negative sign is in front of the rational, and either 8 or 15 can be negative, now, we happen to choose the 8 to get the minus, but it could have been 8/-15
ok, well hmm so, the issue boils down to

now, let's take a peek at the second angle, angle β

now, with that in mind, let's use the angle sum identity for cosine