Move the decimal 2 places to the right
8.4 becomes 840
Answer:
(a) The probability that a single randomly selected value lies between 158.6 and 159.2 is 0.004.
(b) The probability that a sample mean is between 158.6 and 159.2 is 0.0411.
Step-by-step explanation:
Let the random variable <em>X</em> follow a Normal distribution with parameters <em>μ</em> = 155.4 and <em>σ</em> = 49.5.
(a)
Compute the probability that a single randomly selected value lies between 158.6 and 159.2 as follows:

*Use a standard normal table.
Thus, the probability that a single randomly selected value lies between 158.6 and 159.2 is 0.004.
(b)
A sample of <em>n</em> = 246 is selected.
Compute the probability that a sample mean is between 158.6 and 159.2 as follows:

*Use a standard normal table.
Thus, the probability that a sample mean is between 158.6 and 159.2 is 0.0411.
The correct answer is
A. Divide both sides by 6 and then add 2. The solution is x=8
15+24= put it in the calculator u will find the answer(hope this helped)
Answer:
Um.. where's the picture?... wheres the rectangle and the measurements.