Let

be the random variable indicating whether the elevator does not stop at floor

, with

Let

be the random variable representing the number of floors at which the elevator does not stop. Then

We want to find

. By definition,
![\mathrm{Var}(Y)=\mathbb E[(Y-\mathbb E[Y])^2]=\mathbb E[Y^2]-\mathbb E[Y]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%28Y%29%3D%5Cmathbb%20E%5B%28Y-%5Cmathbb%20E%5BY%5D%29%5E2%5D%3D%5Cmathbb%20E%5BY%5E2%5D-%5Cmathbb%20E%5BY%5D%5E2)
As stated in the question, there is a

probability that any one person will get off at floor

(here,

refers to any of the

total floors, not just the top floor). Then the probability that a person will not get off at floor

is

. There are

people in the elevator, so the probability that not a single one gets off at floor

is

.
So,

which means
![\mathbb E[Y]=\mathbb E\left[\displaystyle\sum_{i=1}^nX_i\right]=\displaystyle\sum_{i=1}^n\mathbb E[X_i]=\sum_{i=1}^n\left(1\cdot\left(1-\dfrac1n\right)^m+0\cdot\left(1-\left(1-\dfrac1n\right)^m\right)](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BY%5D%3D%5Cmathbb%20E%5Cleft%5B%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5EnX_i%5Cright%5D%3D%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5En%5Cmathbb%20E%5BX_i%5D%3D%5Csum_%7Bi%3D1%7D%5En%5Cleft%281%5Ccdot%5Cleft%281-%5Cdfrac1n%5Cright%29%5Em%2B0%5Ccdot%5Cleft%281-%5Cleft%281-%5Cdfrac1n%5Cright%29%5Em%5Cright%29)
![\implies\mathbb E[Y]=n\left(1-\dfrac1n\right)^m](https://tex.z-dn.net/?f=%5Cimplies%5Cmathbb%20E%5BY%5D%3Dn%5Cleft%281-%5Cdfrac1n%5Cright%29%5Em)
and
![\mathbb E[Y^2]=\mathbb E\left[\left(\displaystyle\sum_{i=1}^n{X_i}\right)^2\right]=\mathbb E\left[\displaystyle\sum_{i=1}^n{X_i}^2+2\sum_{1\le i](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BY%5E2%5D%3D%5Cmathbb%20E%5Cleft%5B%5Cleft%28%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5En%7BX_i%7D%5Cright%29%5E2%5Cright%5D%3D%5Cmathbb%20E%5Cleft%5B%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5En%7BX_i%7D%5E2%2B2%5Csum_%7B1%5Cle%20i%3Cj%7DX_iX_j%5Cright%5D%3D%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5En%5Cmathbb%20E%5B%7BX_i%7D%5E2%5D%2B2%5Csum_%7B1%5Cle%20i%3Cj%7D%5Cmathbb%20E%5BX_iX_j%5D)
Computing
![\mathbb E[{X_i}^2]](https://tex.z-dn.net/?f=%5Cmathbb%20E%5B%7BX_i%7D%5E2%5D)
is trivial since it's the same as
![\mathbb E[X_i]](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BX_i%5D)
. (Do you see why?)
Next, we want to find the expected value of the following random variable, when

:

If

, we don't care; when we compute
![\mathbb E[X_iX_j]](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BX_iX_j%5D)
, the contributing terms will vanish. We only want to see what happens when both floors are not visited.

![\implies\mathbb E[X_iX_j]=\left(1-\dfrac2n\right)^m](https://tex.z-dn.net/?f=%5Cimplies%5Cmathbb%20E%5BX_iX_j%5D%3D%5Cleft%281-%5Cdfrac2n%5Cright%29%5Em)

where we multiply by

because that's how many ways there are of choosing indices

for

such that

.
So,
Answer:
26 students
Step-by-step explanation:
46/2=23
23 plus the 3 that didnt come equal 26 in total.
John is correct because 0.5 is equal to one half and multiplying something by its half is just same as dividing something in two and half of 1.4 is 0.5
(sorry if it's too long feel free to shorten it)
The midpoint formula is basically just the average of the two points. Here it is:

Then, you plug the points in. The answer is (-13,-5/2) or
C
Answer:
It would take 0.0977 seconds to go 1 meter at that speed