The atomic number is the number of protons. So, you can subtract the atomic number from the mass number to find the number of neutrons.
I hope this helps! :)
K.E. = 1/2 mv²
K.E. is directly proportional to v^2
So, when K.E. increase by 2, K.E. increase by root. 2
v' = 1.41v
original v value was 3 so, final would be:
v' = 1.41*3 = 4.23
After round-off to it's tenth value, it will be:
v' = 4.2
So, option B is your answer!
Hope this helps!
Explanation:
It is given that,
Focal length of the concave mirror, f = -13.5 cm
Image distance, v = -37.5 cm (in front of mirror)
Let u is the object distance. It can be calculated using the mirror's formula as :



u = -21.09 cm
The magnification of the mirror is given by :


m = -1.77
So, the magnification produced by the mirror is (-1.77). Hence, this is the required solution.
Answer:
The answer to your question is given below.
Explanation:
Mechanical advantage (MA) = Load (L)/Effort (E)
MA = L/E
Velocity ratio (VR) = Distance moved by load (l) / Distance moved by effort (e)
VR = l/e
Efficiency = work done by machine (Wd) /work put into the machine (Wp) x 100
Efficiency = Wd/Wp x100
Recall:
Work = Force x distance
Therefore,
Work done by machine (wd) = load (L) x distance (l)
Wd = L x l
Work put into the machine (Wp) = effort (E) x distance (e)
Wp = E x e
Note: the load and effort are measured in Newton (N), while the distance is measured in metre (m)
Efficiency = Wd/Wp x100
Efficiency = (L x l) / (E x e) x 100
Rearrange
Efficiency = L/E ÷ l/e x 100
But:
MA = L/E
VR = l/e
Therefore,
Efficiency = L/E ÷ l/e x 100
Efficiency = MA ÷ VR x 100
Efficiency = MA / VR x 100
Calculate its average speed in meters per second
Answer:
5.77 m/s
Explanation:
Speed= Distance/Time
Distance= 40+ half of 40= 40+20= 60 m
Time= 8.8+1.6=10.4 s
Average speed= 60/10.4=5.769230769 m/s
Approximately, the average speed is 5.77 m/s