The slope of the line connecting two points (<em>a</em>, <em>b</em>) and (<em>c</em>, <em>d</em>) is
(<em>d</em> - <em>b</em>) / (<em>c</em> - <em>a</em>)
i.e. the change in the <em>y</em>-coordinate divided by the change in the <em>x</em>-coordinate. For a function <em>y</em> = <em>f(x)</em>, this slope is the slope of the secant line connecting the two points (<em>a</em>, <em>f(a)</em> ) and (<em>c</em>, <em>f(c)</em> ), and has a value of
(<em>f(c)</em> - <em>f(a)</em> ) / (<em>c</em> - <em>a</em>)
Here, we have
<em>f(x)</em> = <em>x</em> ²
so that
<em>f</em> (1) = 1² = 1
<em>f</em> (1.01) = 1.01² = 1.0201
Then the slope of the secant line is
(1.0201 - 1) / (1.01 - 1) = 0.0201 / 0.01 = 2.01
The given diagram is a scatter plot in which temperature is plotted against number of visitors.
As the number of visitors is rising with the rise in temperature, its a positive correlation.
As joining the dots is going to give a web of line segments, it is not going to be helpful to understand the trends.
The best way to understand the trends is to make the line of best Fit in such a way that the number of dots on either side are approximately the same.
I have attached the figure for your reference of the line of best fit.
Answer:
3 x^3 y^4 sqrt(5x)
Step-by-step explanation:
sqrt(45x^7y^8)
We know that sqrt(ab) = sqrt(a)sqrt(b)
sqrt(45)sqrt(x^7) sqrt(y^8)
sqrt(9*5) sqrt(x^2 *x^2 * x^2* x) sqrt(y^2 *y^2 *y^2 *y^2)
We know that sqrt(ab) = sqrt(a)sqrt(b)
sqrt(9)sqrt(5) sqrt(x^2)sqrt(x^2) sqrt(x^2) sqrt(x) sqrt(y^2)sqrt(y^2)sqrt(y^2)sqrt(y^2)
3 sqrt(5) x*x*x sqrt(x) y*y*y*y
3 x^3 y^4 sqrt(5)sqrt(x)
3 x^3 y^4 sqrt(5x)
Answer:
Where is the number??????