Answer:
3
+ 11a³ - 7a² + 18a - 18
Step-by-step explanation:
<u>When multiplying with two brackets, you need to multiply the three terms, (a²), (4a) and (-6) from the first bracket to all the terms in the second brackets, (3a²), (-a) and (3) individually. I have put each multiplied term in a bracket so it is easier.</u>
(a² + 4a - 6) × (3a² - a + 3) =
(a² × <em>3a²</em>) + {a² × <em>(-a)</em>} + (a² × <em>3</em>) + (4a × <em>3a²</em>) + {4a × <em>(-a)</em>} + (4a × <em>3</em>) + {(-6) × <em>a²</em>) + {(-6) × <em>(-a)</em>} + {(-6) × <em>3</em>}
<u>Now we can evaluate the terms in the brackets. </u>
(a² × 3a²) + {a² × (-a)} + (a² × 3) + (4a × 3a²) + {4a × (-a)} + (4a × 3) + {(-6) × a²) + {(-6) × (-a)} + {(-6) × 3} =
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18)
<u>We can open the brackets now. One plus and one minus makes a minus. </u>
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18) =
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18
<u>Evaluate like terms.</u>
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18 = 3
+ 11a³ - 7a² + 18a - 18
Quadratic formula: (-b +/- sqrt(b^2 - 4ac)) / 2a
a = 10
b = -1
c = 9
1 +/- sqrt((-1)^2 - 4(10)(9)) / 2(10)
1 +/- sqrt(1 - 360) / 20
x = 1 +/- sqrt(359i) / 20
Hope this helps!
Answer:
<h2>
n = <u>
-3</u></h2>
Step-by-step explanation:
126
Explanation
18/-3-(-12)•(-1)•(-11)
divide 18 by -3 and change signs on the 12
(-6)+12•(-1)•(-11)
multiply 12 and -1
(-6)+(-12)•(-11) then multiply -11 and -12
-6+132
126
Answer:
A
Step-by-step explanation:
equation of the line graphed
(y-4)/(2-4) = (x+6)/(0+6)
(y-4)/(-2) = (x+6)/6
y-4 = (x+6)/-3
y = (x+6)/-3 +4
y = (x+6-12)/-3
y = -1/3x + 2
so the answer is A