To solve this problem we will apply the concepts related to the double slit-experiment. For which we will relate the distance between the Slits and the Diffraction Angle with the order of the bright fringe and the wavelength, this is mathematically given as,

Here,
d = Distance between Slits
m = Order of the fringes
= Wavelength
= 

Rearranging to find the angle,




Therefore the angle that the fourth order bright fringe occur for this specific wavelenth of light occur is 32.19°
Answer:
Option D - 0.2 s
Explanation:
We are given;
Initial velocity; u = 7 m/s
Height of table; h = 1.8m
Now,since we want to find the time the car spent in the air, we will simply use one of Newton's equation of motion.
Thus;
h = ut + ½gt²
Plugging in the relevant values, we have;
1.8 = 7t + ½(9.8)t²
4.9t² + 7t - 1.8 = 0
Using quadratic formula to find the roots of the equation gives us;
t = -1.65 or 0.22
We can't have negative t value, thus we will pick the positive one.
So, t = 0.22 s
This is approximately 0.2 s
3.4814815 (or 3 13/27) m/s
speed = distance/time
3.4814815 (or 3 13/27) = 94/27
They were published in 1542.
Answer:
100,048
Explanation:
K.E = 1/2 m (v)^2
K.E = 1^/2 * 74 * (52)^2
K.E = 100,048J =100.048kJ