tis a little of plain differentiation.
we know the radius of the cone is decreasing at 10 mtr/mins, or namely dr/dt = -10, decreasing, meaning is negative.
we know the volume is decreasing at a rate of 1346 mtr/mins or namely dV/dt = -1346, also negative.
so, when h = 9 and V = 307, what is dh/dt in essence.
we'll be needing the "r" value at that instant, so let's get it

now let's get the derivative of the volume of the cone
![V=\cfrac{1}{3}\pi r^2 h\implies \cfrac{dV}{dt}=\cfrac{\pi }{3}\stackrel{product~rule}{ \left[ \underset{chain~rule}{2r\cdot \cfrac{dr}{dt}}\cdot h+r^2\cdot \cfrac{dh}{dt} \right]} \\\\\\ -1346=\cfrac{\pi }{3}\left[2\sqrt{\cfrac{307}{3\pi }}(-10)(9)~~+ ~~ \cfrac{307}{3\pi } \cdot \cfrac{dh}{dt}\right]](https://tex.z-dn.net/?f=V%3D%5Ccfrac%7B1%7D%7B3%7D%5Cpi%20r%5E2%20h%5Cimplies%20%5Ccfrac%7BdV%7D%7Bdt%7D%3D%5Ccfrac%7B%5Cpi%20%7D%7B3%7D%5Cstackrel%7Bproduct~rule%7D%7B%20%5Cleft%5B%20%5Cunderset%7Bchain~rule%7D%7B2r%5Ccdot%20%5Ccfrac%7Bdr%7D%7Bdt%7D%7D%5Ccdot%20h%2Br%5E2%5Ccdot%20%5Ccfrac%7Bdh%7D%7Bdt%7D%20%5Cright%5D%7D%20%5C%5C%5C%5C%5C%5C%20-1346%3D%5Ccfrac%7B%5Cpi%20%7D%7B3%7D%5Cleft%5B2%5Csqrt%7B%5Ccfrac%7B307%7D%7B3%5Cpi%20%7D%7D%28-10%29%289%29~~%2B%20~~%20%5Ccfrac%7B307%7D%7B3%5Cpi%20%7D%20%5Ccdot%20%5Ccfrac%7Bdh%7D%7Bdt%7D%5Cright%5D)
![-\cfrac{4038}{\pi }=-\cfrac{180\sqrt{307}}{\sqrt{3\pi }}+\cfrac{307}{3\pi } \cdot \cfrac{dh}{dt}\implies \left[ -\cfrac{4038}{\pi }+\cfrac{180\sqrt{307}}{\sqrt{3\pi }} \right]\cfrac{3\pi }{307}=\cfrac{dh}{dt} \\\\\\ -\cfrac{12114}{307}+\cfrac{180\sqrt{3\pi }}{\sqrt{307}}=\cfrac{dh}{dt}\implies -7.920939735970634 \approx \cfrac{dh}{dt}](https://tex.z-dn.net/?f=-%5Ccfrac%7B4038%7D%7B%5Cpi%20%7D%3D-%5Ccfrac%7B180%5Csqrt%7B307%7D%7D%7B%5Csqrt%7B3%5Cpi%20%7D%7D%2B%5Ccfrac%7B307%7D%7B3%5Cpi%20%7D%20%5Ccdot%20%5Ccfrac%7Bdh%7D%7Bdt%7D%5Cimplies%20%5Cleft%5B%20-%5Ccfrac%7B4038%7D%7B%5Cpi%20%7D%2B%5Ccfrac%7B180%5Csqrt%7B307%7D%7D%7B%5Csqrt%7B3%5Cpi%20%7D%7D%20%5Cright%5D%5Ccfrac%7B3%5Cpi%20%7D%7B307%7D%3D%5Ccfrac%7Bdh%7D%7Bdt%7D%20%5C%5C%5C%5C%5C%5C%20-%5Ccfrac%7B12114%7D%7B307%7D%2B%5Ccfrac%7B180%5Csqrt%7B3%5Cpi%20%7D%7D%7B%5Csqrt%7B307%7D%7D%3D%5Ccfrac%7Bdh%7D%7Bdt%7D%5Cimplies%20-7.920939735970634%20%5Capprox%20%5Ccfrac%7Bdh%7D%7Bdt%7D)
There are 4 teams in total and each team has 7 members. One of the team will be the host team.
Tournament committee will be made from 3 members from the host team and 2 members from each of the three remaining teams. Selecting the members for tournament committee is a combinations problem. We have to select 3 members out 7 for host team and 2 members out of 7 from each of the remaining 3 teams.
So total number of possible 9 member tournament committees will be equal to:

This is the case when a host team is fixed. Since any team can be the host team, there are 4 possible ways to select a host team. So the total number of possible 9 member tournament committee will be:

Therefore, there are 2917215 possible 9 member tournament committees
Answer:
3 1/3 mph
Step-by-step explanation:
2.5 ÷ 0.75 = 3.3
or
5/2 ÷3/4 = 5/2 · 4/3 = 20/6 or 10/3 = 3 1/3
Answer:
the hourly rates are $8 and $10 respectively
Step-by-step explanation:
Given that
The generator rents for 6 hours and the total cost is $48
And, for another job The generator rents for 4 hours and the total cost is $40
We need to find out the hourly rates
For the first one
= $48 ÷ 6 hours
= $8
For the second one
= $40 ÷ 4 hours
= $10
Hence, the hourly rates are $8 and $10 respectively