Answer:
Hey!
Your answer is 14m (2sf)
Step-by-step explanation:
<u>WE HAVE TO USE PYTHAGORAS!</u> ⇒ a²+b²=c² THEN √c = (unknown side)
Here: 12² + 8²= 208
Now SQUARE-ROOT 208! ⇒ √208
ANSWER: 14.42220510185596
The answers there are rounded up so we round this number to get 14m!
B IS YOUR OPTION!
<h2><u>
</u></h2><h2><u>
I HOPE THIS HELPED YOU!</u></h2>
First off, let's notice that the angle is in the IV Quadrant, where sine is negative and the cosine is positive, likewise the opposite and adjacent angles respectively.
Also let's bear in mind that the hypotenuse is never negative, since it's simply just a radius unit.
![\bf cot(\theta )=\cfrac{\stackrel{adjacent}{6}}{\stackrel{opposite}{-7}}\qquad \impliedby \textit{let's find the \underline{hypotenuse}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies c=\sqrt{a^2+b^2} \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ c=\sqrt{6^2+(-7)^2}\implies c=\sqrt{36+49}\implies c=\sqrt{85} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20cot%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B6%7D%7D%7B%5Cstackrel%7Bopposite%7D%7B-7%7D%7D%5Cqquad%20%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Bhypotenuse%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20c%3D%5Csqrt%7Ba%5E2%2Bb%5E2%7D%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20c%3D%5Csqrt%7B6%5E2%2B%28-7%29%5E2%7D%5Cimplies%20c%3D%5Csqrt%7B36%2B49%7D%5Cimplies%20c%3D%5Csqrt%7B85%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)


Answer:
8 cups of water : 1 cup of cleaner
Step-by-step explanation:
To find the ratio, divide one value by the other. 12÷1½=8, so the ratio is 8 cups of water : 1 cup of cleaner.
Which one is it the top one or the bottom one?
Given the scores on a statewide standardized test are normally distributed
Mean = μ = 78
Standard deviation = σ = 3
Normalize the data using the z-score by using the following formula and chart:

Estimate the percentage of scores of the following cases:
(a) between 75 and 81
so, the z-score for the given numbers will be:

As shown, the percentage when (-1 < z < 1) = 68%
(b) above 87

The percentage when (z > 3) = 0.5%
(c) below 72

The percentage when (z < -2) = 0.5 + 2 = 2.5%
(d) between 75 and 84

The percentage when ( -1 < z < 2 ) = 68 + 13.5 = 81.5%