If your asking which one is more it is 17 quarts.
Answer:
59 patients
Step-by-step explanation:
Total patients Sam saw in a week = 236
Percentage of patients near-sighted = 25%
How many of the patients Sam saw were near-sighted?
Number of patients near-sighted = 25% of 236
= 25/100 × 236
= 0.25 × 236
= 59
Number of patients near-sighted = 59 patients
The number of patients Sam saw in a week that were near-sighted is 59 patients
Based on the calculations, the measure of angle BDF and CFG are 100° and 38° respectively.
<h3>The condition for two parallel lines.</h3>
In Geometry, two (2) straight lines are considered to be parallel if their slopes are the same (equal) and they have different y-intercepts. This ultimately implies that, two (2) straight lines are parallel under the following conditions:
m₁ = m₂
<u>Note:</u> m is the slope.
<h3>What is the alternate interior angles theorem?</h3>
The alternate interior angles theorem states that when two (2) parallel lines are cut through by a transversal, the alternate interior angles that are formed are congruent.
Based on the alternate interior angles theorem, we can infer and logically deduce the following properties from the diagram (see attachment):
For angle BDF, we have:
<BDF = <BDH + <HDF
<BDF = 38° + 62°
<BDF = 100°.
Since angles BDF and DFC are linear pair, they are supplementary angles. Thus, we have:
∠BDF + <DFC = 180°
<DFC = 180 - ∠BDF
<DFC = 180 - 100
<DFC = 80°.
For angle CFG, we have:
∠DFE + <DFC + <CFG= 180°
<CFG = 180° - ∠DFE - <DFC
<CFG = 180° - 62° - 80°
<CFG = 38°.
Read more on parallel lines here: brainly.com/question/3851016
#SPJ1
Answer:
The dilation on any point of the rectangle is
.
Step-by-step explanation:
From Linear Algebra, we define the dilation of a point by means of the following definition:
(1)
Where:
- Coordinates of the point G, dimensionless.
- Center of dilation, dimensionless.
- Scale factor, dimensionless.
- Coordinates of the point G', dimensionless.
If we know that
,
and
, then scale factor is:
![(5,-5) = (0,0) +k\cdot [(2,-2)-(0,0)]](https://tex.z-dn.net/?f=%285%2C-5%29%20%3D%20%280%2C0%29%20%2Bk%5Ccdot%20%5B%282%2C-2%29-%280%2C0%29%5D)


The dilation on any point of the rectangle is:
![P'(x,y) = (0,0) + \frac{5}{2}\cdot [P(x,y)-(0,0)]](https://tex.z-dn.net/?f=P%27%28x%2Cy%29%20%3D%20%280%2C0%29%20%2B%20%5Cfrac%7B5%7D%7B2%7D%5Ccdot%20%5BP%28x%2Cy%29-%280%2C0%29%5D)
(2)
The dilation on any point of the rectangle is
.
In order to solve this, we need to select the function that meets our constraints. Since x^2 - 5 occurs when x is less than 3, and the x-value we are given is -4, we use the first function.
f(-4) = (-4)^2 - 5
f(-4) = 16 - 5
f(-4) = 11