Step-by-step explanation:
<h3><u>Given :-</u></h3>
[1+(1/Tan²θ)] + [ 1+(1/Cot²θ)]
<h3>
<u>Required To Prove :-</u></h3>
[1+(1/Tan²θ)]+[1+(1/Cot²θ)] = 1/(Sin²θ-Sin⁴θ)
<h3><u>Proof :-</u></h3>
On taking LHS
[1+(1/Tan²θ)] + [ 1+(1/Cot²θ)]
We know that
Tan θ = 1/ Cot θ
and
Cot θ = 1/Tan θ
=> (1+Cot²θ)(1+Tan²θ)
=> (Cosec² θ) (Sec²θ)
Since Cosec²θ - Cot²θ = 1 and
Sec²θ - Tan²θ = 1
=> (1/Sin² θ)(1/Cos² θ)
Since , Cosec θ = 1/Sinθ
and Sec θ = 1/Cosθ
=> 1/(Sin²θ Cos²θ)
We know that Sin²θ+Cos²θ = 1
=> 1/[(Sin²θ)(1-Sin²θ)]
=> 1/(Sin²θ-Sin²θ Sin²θ)
=> 1/(Sin²θ - Sin⁴θ)
=> RHS
=> LHS = RHS
<u>Hence, Proved.</u>
<h3><u>Answer:-</u></h3>
[1+(1/Tan²θ)]+[1+(1/Cot²θ)] = 1/(Sin²θ-Sin⁴θ)
<h3><u>Used formulae:-</u></h3>
→ Tan θ = 1/ Cot θ
→ Cot θ = 1/Tan θ
→ Cosec θ = 1/Sinθ
→ Sec θ = 1/Cosθ
<h3><u>Used Identities :-</u></h3>
→ Cosec²θ - Cot²θ = 1
→ Sec²θ - Tan²θ = 1
→ Sin²θ+Cos²θ = 1
Hope this helps!!
⚘<em>Refer to the attachments for solution!!~</em>
Answer:
30 ft. x 55ft
Step-by-step explanation:
3 x 5.5
1 inch = 10 ft
3 * 10 = 30
5.5 = 55
30' x 55'
We know that
points are
x intercept
A (4,0)
y intercept
B (0,11)
step 1
find the equation of a line
m=(y2-y1)/(x2-x1)--------> m=(11-0)/(0-4)------> m=-11/4
with m and the point B (0,11)
y-y1=m*(x-x1)y-11=(-11/4)*(x-0)---------> y=-(11/4)x+11
the answer is
the formula of the function is y=-(11/4)x+11
see the attached figure