2073600 secondsssssssssssssssssssssssssss
Answer:
tissue
Explanation:
cell→tissue→organ→systems→organism
Answer:
Explanation:
count given by old sample = .97 disintegrations per minute per gram
count given by fresh sample = 6.68 disintegrations per minute per gram
Half life of radioactive carbon = 5568 years
rate of disintegration
dN / dt = λ N
In other words rate of disintegration is proportional to no of radioactive atoms present . As number reduces rate also reduces .
Let initial no of radioactive be N₀ and after time t , number reduces to N
N₀ / N = 6.68 / .97
Now



λ is disintegration constant
λ = .693 / half life
= .693 / 5568
= .00012446 year⁻¹
Putting the values in the equation above


1.929577 = .00012446 t
t = 15503.6 years .
Answer:
Electron-pair geometry: tetrahedral
Molecular geometry: trigonal pyramidal
Hybridization: sp³
sp³ - 4 p
Explanation:
There is some info missing. I think this is the original question.
<em>For NBr₃, What are its electron-pair and molecular geometries? What is the hybridization of the nitrogen atom? What orbitals on N and Br overlap to form bonds between these elements?</em>
<em>The N-Br bonds are formed by the overlap of the ___ hybrid orbitals on nitrogen with ___ orbitals on Br.</em>
<em />
Nitrogen is a central atom surrounded by 4 electron domains. According to VESPR, the corresponding electron-pair geometry is tetrahedral.
Of these 4 electron domains, 3 represent covalent bonds with Br and 1 lone pair. According to VESPR, the corresponding molecular geometry is trigonal pyramidal.
In the nitrogen atom, 1 s orbital and 3 p orbitals hybridize to form 4 sp³ orbitals for each of the electron domains.
The N-Br bonds are formed by the overlap of the sp³ hybrid orbitals on nitrogen with 4p orbitals on Br.
Answer:
The answer of this question is 3