Are there any choices to your question? If so what are they? Then I can answer. :)
It’s water vapor, does this help?
Explanation:
To answer this question, we'll need to use the Ideal Gas Law:
p
V
=
n
R
T
,
where
p
is pressure,
V
is volume,
n
is the number of moles
R
is the gas constant, and
T
is temperature in Kelvin.
The question already gives us the values for
p
and
T
, because helium is at STP. This means that temperature is
273.15 K
and pressure is
1 atm
.
We also already know the gas constant. In our case, we'll use the value of
0.08206 L atm/K mol
since these units fit the units of our given values the best.
We can find the value for
n
by dividing the mass of helium gas by its molar mass:
n
=
number of moles
=
mass of sample
molar mass
=
6.00 g
4.00 g/mol
=
1.50 mol
Now, we can just plug all of these values in and solve for
V
:
p
V
=
n
R
T
V
=
n
R
T
p
=
1.50 mol
×
0.08206 L atm/K mol
×
273.15 K
1 atm
= 33.6 L
this is not the answer but it will help you
do by the formula it is on the answer
my answer is D sorry if I'm wrong
Answer:
Adding a solution containing an anion that forms an insoluble salt with only one of the metal ions.
Explanation:
The student have in solution Ag⁺ and Cu²⁺ ions but he just want to analyze the silver, that means he need to separate ions.
Centrifuging the solution to isolate the heavier ions <em>FALSE </em>Centrifugation allows the separation of a suspension but Ag⁺ and Cu²⁺ are both soluble in water.
Adding enough base solution to bring the pH up to 7.0 <em>FALSE </em>At pH = 7,0 these ions are soluble in water and its separation will not be possible.
Adding a solution containing an anion that forms an insoluble salt with only one of the metal ions <em>TRUE </em>For example, the addition of Cl⁻ will precipitate the Ag⁺ as AgCl(s) allowing its separation.
Evaporating the solution to recover the dissolved nitrates. <em>FALSE</em> . Thus, you will obtain the nitrates of these ions but will be mixed doing impossible its separation.
I hope it helps!