Answer:
Negative time a negative equals a positive!
Step-by-step explanation:
When you multiply two negative numbers or two positive numbers then the product is always positive. The same also goes for dividing negative integers.
<h3>
Answer :</h3>

==============
<h3>
Solving Steps:</h3>
===============

<u>breakdown</u>

<u>factor common term</u>

<u>collect in groups</u>

<u>apply difference between two square method:</u> x² - y² = (x+ y)(x-y)

<u>simplify</u>

Answer:
a) f(x) = -2x² + 4x
Explanation:
To find the standard form we need to solve the equation as:

So, the standard form is f(x) = -2x² + 4x
To make the graph we will use the initial form because when the equation is written like f(x) = a(x-h)²+k, the coordinate (h,k) is the vertex of the parabola
So, in this case, the vertex of the parabola is the point (1, 2)
On the other hand, we can find a point in the graph. For example, if x is equal to 0, then f(x) is equal to:
f(x) = -2(x-1)² + 2
f(0) = -2(0-1)² + 2
f(0) = -2(-1)² + 2
f(0) = - 2 + 2
f(0) = 0
So, the parabola passes through the point (0,0) and has a vertex in the point (1, 2). Then, the graph is:
Check the picture below.
where is the -16t² coming from? that's Earth's gravity pull in feet.
![\bf ~~~~~~\textit{initial velocity} \\\\ \begin{array}{llll} ~~~~~~\textit{in feet} \\\\ h(t) = -16t^2+v_ot+h_o \end{array} \quad \begin{cases} v_o=\stackrel{30}{\textit{initial velocity of the object}}\\\\ h_o=\stackrel{6}{\textit{initial height of the object}}\\\\ h=\stackrel{}{\textit{height of the object at "t" seconds}} \end{cases} \\\\\\ h(t)=-16t^2+30t+6 \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Binitial%20velocity%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20~~~~~~%5Ctextit%7Bin%20feet%7D%20%5C%5C%5C%5C%20h%28t%29%20%3D%20-16t%5E2%2Bv_ot%2Bh_o%20%5Cend%7Barray%7D%20%5Cquad%20%5Cbegin%7Bcases%7D%20v_o%3D%5Cstackrel%7B30%7D%7B%5Ctextit%7Binitial%20velocity%20of%20the%20object%7D%7D%5C%5C%5C%5C%20h_o%3D%5Cstackrel%7B6%7D%7B%5Ctextit%7Binitial%20height%20of%20the%20object%7D%7D%5C%5C%5C%5C%20h%3D%5Cstackrel%7B%7D%7B%5Ctextit%7Bheight%20of%20the%20object%20at%20%22t%22%20seconds%7D%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20h%28t%29%3D-16t%5E2%2B30t%2B6%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

![\bf \left(-\cfrac{30}{2(-16)}~~,~~6-\cfrac{30^2}{4(-16)} \right)\implies \left( \cfrac{30}{32}~,~6+\cfrac{225}{16} \right)\implies \left(\cfrac{15}{16}~,~\cfrac{321}{16} \right) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill (\stackrel{\stackrel{\textit{how many}}{\textit{seconds it took}}}{0.9375}~~,~~\stackrel{\stackrel{\textit{how many feet}}{\textit{up it went}}}{20.0625})~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cleft%28-%5Ccfrac%7B30%7D%7B2%28-16%29%7D~~%2C~~6-%5Ccfrac%7B30%5E2%7D%7B4%28-16%29%7D%20%5Cright%29%5Cimplies%20%5Cleft%28%20%5Ccfrac%7B30%7D%7B32%7D~%2C~6%2B%5Ccfrac%7B225%7D%7B16%7D%20%5Cright%29%5Cimplies%20%5Cleft%28%5Ccfrac%7B15%7D%7B16%7D~%2C~%5Ccfrac%7B321%7D%7B16%7D%20%5Cright%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%28%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bhow%20many%7D%7D%7B%5Ctextit%7Bseconds%20it%20took%7D%7D%7D%7B0.9375%7D~~%2C~~%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bhow%20many%20feet%7D%7D%7B%5Ctextit%7Bup%20it%20went%7D%7D%7D%7B20.0625%7D%29~%5Chfill)
EXPONENTIAL FUNCTIONS<span>. </span>Graph<span> each </span>exponential function<span>. Write the asymptote in the blank. </span>1. f(x<span>) = </span>2(3<span>'). ~. </span>II<span> -= 0. </span>2. f(x<span>) = </span>2<span>,,·5+ </span>2<span> ..... </span>c) $750 invested at 6.25% compounded <w!y for 5years. / .D<span>~\g~6·~. A-:. 750 l </span>1+ "Ole$'). -::-10;).5, (D<span>. •. 7. Write the </span>function<span> and find the principal needed to obtain</span><span> ...</span>