<u>Given</u><u> </u><u>info:</u><u>-</u>If the radius of a right circular cylinder is doubled and height becomes 1/4 of the original height.
Find the ratio of the Curved Surface Areas of the new cylinder to that of the original cylinder ?
<u>Explanation</u><u>:</u><u>-</u>
Let the radius of the right circular cylinder be r units
Let the radius of the right circular cylinder be h units
Curved Surface Area of the original right circular cylinder = 2πrh sq.units ----(i)
If the radius of the right circular cylinder is doubled then the radius of the new cylinder = 2r units
The height of the new right circular cylinder
= (1/4)×h units
⇛ h/4 units
Curved Surface Area of the new cylinder
= 2π(2r)(h/4) sq.units
⇛ 4πrh/4 sq.units
⇛ πrh sq.units --------(ii)
The ratio of the Curved Surface Areas of the new cylinder to that of the original cylinder
⇛ πrh : 2πrh
⇛ πrh / 2πrh
⇛ 1/2
⇛ 1:2
Therefore the ratio = 1:2
The ratio of the Curved Surface Areas of the new cylinder to that of the original cylinder is 1:2
YAY I KNOW HOW TO DO THIS OKAY
so 90 degrees minus 49 degrees equals 41 degrees
then 41= (x+3) then you subtract 3
so x=38
Your answer is 8x hope that helps
Answer:
The number of teenagers in the stratified sample of equal proportion is 30 teenagers
Step-by-step explanation:
Whereby tickets are sold to only adults male and female and teenagers, boys and girls, we have the following groups
Group 1: Female adult
Group 2: Male adult
Group 3: Teenage boys
Group 4: Teenage girls
In stratified sampling, the types of people that visit the zoo (which is the target population) are identified and the appropriate proportion of each of the identified types is determined such that the sample is representative of the population
Where equal number of each group are observed to have visited the zoo, then, the appropriate sample size of the teenager is found as follows;
Number of groups identified = 4
Sample size = 30
Appropriate proportion of each group = 1/4
Number of teenage boys in the sample = 1/4×30 = 15
Number of teenage girls in the sample = 1/4×30 = 15
Total number of teenagers in the sample = 15 + 15 = 30 teenagers.
Answer:
13.76
Step-by-step explanation:
Area of the whole
The area of the whole = s^2 (the firgure is a square
s = 8
Area of the whole = 8^2 = 64
Area of the unshaded part
The 2 half circles = 1 whole circle
The radius of the 1/2 circle = 4 (eight has been cut in half)
Area of two half circles = 2* (pi r^2/2)
Area of two half circles = 2 * (pi 4^2/2)
area of two half circles = 16*pi
Area of the shaded area
Area of the shaded area = area of the whole - area of the unshaded area
Area of the shaded area = 64 - 16*pi
Area of the shaded area = 64 - 3.14*16 = 13.76