1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Y_Kistochka [10]
2 years ago
12

10 points, doing this one again because I got a wrong answer last time but regardless thank you for trying to help​

Mathematics
2 answers:
Alik [6]2 years ago
6 0

Hey ! there

Answer:

  • Value of missing side i.e. TE is <u>1</u><u>2</u><u> </u><u>feet</u>

Step-by-step explanation:

In this question we are provided with a <u>right</u><u> </u><u>angle </u><u>triangle</u> having <u>TS </u><u>-</u><u> </u><u>35</u><u> </u><u>ft </u><u>and</u><u> </u><u>SE </u><u>-</u><u> </u><u>37</u><u> </u><u>ft </u>. And we are asked to find the missing side that is <u>TE </u>using Pythagorean Theorem .

<u>Pythagorean Theorem :</u> -

According to Pythagorean Theorem sum of squares of perpendicular and base is equal to square of hypotenuse in a right angle triangle i.e.

  • H² = P² + B²

<u>Where </u><u>,</u>

  • H refers to <u>Hypotenuse</u>

  • P refers to <u>Perpendicular</u>

  • B refers to <u>Base</u>

<u>Solution</u><u> </u><u>:</u><u> </u><u>-</u>

In the given triangle ,

  • Base = <u>TE </u>

  • Perpendicular = <u>TS </u><u>(</u><u> </u><u>35</u><u> </u><u>feet </u><u>)</u>

  • Hypotenuse = <u>SE </u><u>(</u><u> </u><u>37</u><u> </u><u>feet </u><u>)</u>

Now applying Pythagorean Theorem :

\quad \longmapsto \qquad \:SE {}^{2}  = TS {}^{2}  + TE {}^{2}

Substituting values :

\quad \longmapsto \qquad \:37 {}^{2}  = 35 {}^{2}  + TE {}^{2}

Simplifying it ,

\quad \longmapsto \qquad \:1369 = 1225  + TE {}^{2}

Subtracting 1225 on both sides :

\quad \longmapsto \qquad \:1369 - 1225  = \cancel{1225}  + TE {}^{2}  -  \cancel{1225}

We get ,

\quad \longmapsto \qquad \:144 = TE {}^{2}

Applying square root to both sides :

\quad \longmapsto \qquad \ \sqrt{ 144} =  \sqrt{TE {}^{2}}

We get ,

\quad \longmapsto \qquad \:     \red{\underline{\boxed{\frak{TE  = 12 \: feet}}}} \quad \bigstar

  • <u>Henceforth</u><u> </u><u>,</u><u> </u><u>value </u><u>of </u><u>missing </u><u>side </u><u>is </u><em><u>1</u></em><em><u>2</u></em><em><u> </u></em><em><u>feet </u></em><em><u>.</u></em>

<u>Verifying</u><u> </u><u>:</u><u> </u><u>-</u>

Now we are verifying our answer using Pythagorean Theorem . We know that according to Pythagorean Theorem ,

  • SE² = TS² + TE²

Substituting value of SE , TS and TE :

  • 37² = 35² + <u>1</u><u>2</u><u>²</u>

  • 1369 = 1225 + 144

  • 1369 = 1369

  • L.H.S = R.H.S

  • Hence , Verified .

<u>Therefore</u><u> </u><u>,</u><u> </u><u>our</u><u> answer</u><u> is</u><u> correct</u><u> </u><u>.</u>

<h2><u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
FinnZ [79.3K]2 years ago
6 0

\sf\large \green{\underbrace{\red{Answer⋆}}}:

TE = 12 feet

Step-by-step explanation:

\textsf {\underline{ \large  {To  find :-}}}

length of TE

\sf {\underline {\large {Given :-}}}

TS = 35 feet

SE = 37 feet

\sf{ \green {\underline{ \underline {\huge{Solution :-}}}}}

According to Pythagoras theorem

\sf \pink {hypotenuse^{2}  =  {perpendicular}^{2}  +  {base}^{2} }

in the diagram

SE is our hypotenuse as it is front of 90°

TS is our perpendicular

TE is our base

So with the above formula we can find our base which is TE

\sf \implies  {37}^{2}  =  {35}^{2}  +  {base}^{2}  \\  \\  \sf  \implies 1369 = 1225 +  {base}^{2}  \\  \\  \sf  \implies 1369 - 1225 =  {base}^{2}  \\  \\  \sf  \implies 144 =  {base}^{2}  \\  \\  \sf  \implies  \sqrt{144}  = base \\  \\  \sf  \implies { \fbox  {\blue {12 = base}}}

It's means our TE is 12 feet

You might be interested in
PLEASE HELP! What is the length of side BC?
yanalaym [24]
The answer is 
D 18 3 
I'm pretty sure 
6 0
3 years ago
What is equivalent to 2/4
padilas [110]
1/2, 4/8, etc. Because they all equal to one half. <span />
8 0
3 years ago
Read 2 more answers
if in a parallelogram diagonals bisect each other at right angle and are equal then it is a ___________​
andrew11 [14]

Answer:

A parallelogram with one right angle is a rectangle. A quadrilateral whose diagonals are equal and bisect each other is a rectangle.

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
How do i solve (4+6i)+(8-10i)?
ELEN [110]

Answer:

12- 4i

Step-by-step explanation:

(4+6i)+(8-10i)

4+6i+8-10i

4+8+6i-10i

12-4i

6 0
3 years ago
A-2b= -10 for b plsssss helpppp
Artyom0805 [142]
A-2b=-10
b=-10-a.
Hope this is the answer
Mark as brainliest
5 0
3 years ago
Other questions:
  • The exterior angles of an octagon are 42°, 55°, 39°, 20°, 62°, 45°, and 47°. What is the measure of the eighth exterior angle? S
    12·2 answers
  • 11. If 9m - 3 = -318, then 14m = ?<br> a. -28<br> b. -504<br> c. -329<br> d. -584<br> e. -490
    12·2 answers
  • Please solve for x will make brianlist
    12·2 answers
  • 17. Solve for<br> for x.<br> M<br> (10x - 45)<br> N<br> R<br> Р<br> (6x - 1)
    15·1 answer
  • Plz help I will mark as brainliest. Jason has $60 to spend. He wants to purchase a bag for $30, one calculator for $13,3
    12·1 answer
  • Solve this please show your work &lt;3
    12·1 answer
  • 6.012 as a fraction?
    8·2 answers
  • 1) Eight times the difference between a number and seven, is the same as when five times
    8·1 answer
  • Why might variable expenses change a great deal at different times of year? Heating and cooling costs might vary considerably. I
    12·1 answer
  • The age of a father is 2 less than 7 times the age of his son. In 3 years, the sum of their ages will be 52. If the son’s presen
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!