16) yes, they are reflections on a summit.
17) no parallelogram shown to answer question <span />
Since ABCD is a parallelogram, the opposite sides will be parallel and equal,

Consider that AC acts as a transversal to the parallel lines AB and CD, so we can write,

So by the ASA criteria, the triangle AED is congruent to the triangle CEB,
Then the corresponding parts of the triangles will be equal,

Hence Proved.
Answer:
C
Step-by-step explanation:
From the given coordinates
A(6, 0), B(0, 0) then AB = 6 - 0 = 6
B(0, 0), C(0, 8) then BC = 8 - 0 = 8
To calculate AC use Pythagoras' theorem on the right triangle formed
AC² = AB² + BC² = 6² + 8² = 36 + 64 = 100
Take the square root of both sides, hence
AC =
= 10
Perimeter = AB + BC + AC = 6 + 8 + 10 = 24 → C
A) yes
B) yes
C) no
For each of these, substitute the value of x in the ordered pair into x in the function.
For A, x = -5; -5<2, so the piece of the function we want is f(x) = 3. In our ordered pair, y=f(x)=3, so yes, it is a solution.
For B, x = 2; 2≤2<6, so the piece of the function we want is f(x) = -x+1. In our ordered pair, y=f(x)=-1; -2+1=-1, so yes, it is a solution.
For C, x = 8; 8≥6, so the piece of the function we want is f(x) = x. In our ordered pair, y=f(x)=-7; -7≠8, so no, it is not a solution.
Answer:
<em>R</em><em>M</em>79 608.51
Step-by-step explanation:
First year,
<em>RM</em>505 050.00×5%=<em>RM</em>505 050.00×5/100
=<em>RM</em>25 252.50
second year,
(<em>RM</em>505 050.00+<em>R</em><em>M</em>25 252.50)×5%=<em>RM</em>530 302.50×5/100
=<em>RM</em>26 515.13
third year,
(<em>R</em><em>M</em>530 302.50+<em>R</em><em>M</em>26 515.13)×5%=<em>R</em><em>M</em>556817.63×5/100
=<em>R</em><em>M</em>27840.88
three years interest,
<em>RM</em>25 252.50+<em>RM</em>26 515.13+<em>RM</em>27840.88=<em>RM</em>79608.51
<em><u>I</u></em><em><u> </u></em><em><u>d</u></em><em><u>o</u></em><em><u>n</u></em><em><u>'</u></em><em><u>t</u></em><em><u> </u></em><em><u>k</u></em><em><u>n</u></em><em><u>o</u></em><em><u>w</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>a</u></em><em><u>t</u></em><em><u> </u></em><em><u>i</u></em><em><u>s</u></em><em><u> </u></em><em><u>R</u></em><em><u> </u></em><em><u>o</u></em><em><u>r</u></em><em><u> </u></em><em><u>R</u></em><em><u>M</u></em><em><u> </u></em>
<em><u>i</u></em><em><u>f</u></em><em><u> </u></em><em><u>i</u></em><em><u>t</u></em><em><u> </u></em><em><u>i</u></em><em><u>s</u></em><em><u> </u></em><em><u>R</u></em><em><u> </u></em><em><u>,</u></em><em><u>s</u></em><em><u>o</u></em><em><u>r</u></em><em><u>r</u></em><em><u>y</u></em>
<u>H</u><u>o</u><u>p</u><u>e</u><u> </u><u>c</u><u>a</u><u>n</u><u> </u><u>h</u><u>e</u><u>l</u><u>p</u><u>!</u>