1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ollegr [7]
1 year ago
10

This is for AP CALCULUS. I really need help on this. I’m trying to find the first and second derivative of these three functions

.

Mathematics
1 answer:
ale4655 [162]1 year ago
8 0

Review Material:

\sqrt[n]{x^m} = x^{\frac{m}{n}}

\frac{d}{dx}[x^n]=nx^{n-1}\\

\frac{d}{dx}[\sin(x)]=\cos(x)\\

 \frac{d}{dx}[\cos(x)]=-\sin(x)\\

\frac{d}{dx}[constant]=0\\

Step-by-step explanation:

(a)

F(x) = -2\cos(x) +x^{\frac{4}{3}} -3e\\ \text{Note: 3e is a constant}\\F'(x) = 2\sin(x) + \frac{4}{3}x^{\frac{1}{3}}\\F''(x) = 2\cos(x) + \frac{4}{9}x^{-\frac{2}{3}}

(b)

F(x) = x^{-3} + \frac{1}{2}x^2-\sin(x)\\F'(x)=-3x^{-4} + x - \cos(x)\\F''(x) = 12x^{-5} + 1 + \sin(x)

(c)

F(x) = 2x^{-3}+x^{\frac{3}{4}}-4x\\F'(x) = -6x^{-4} + \frac{3}{4}x^{-\frac{1}{4}}-4\\F''(x)= 24x^{-5} - \frac{3}{16}x^{-\frac{5}{4}}

You might be interested in
An artificial lake is in the shape of a rectangle and has an area of 9/20 square mile the width of the lake is 1/5 the length of
DIA [1.3K]
Answer:  The dimensions are:   " 1.5 mi.  ×  ³⁄₁₀  mi. " .
_______________________________________________
             { length = 1.5 mi. ;  width =  ³⁄₁₀  mi. } .
________________________________________________
Explanation:
___________________________________________
Area of a rectangle:

A = L * w ; 

in which:  A = Area = (9/20) mi.² ,
                L = Length = ?
                w = width = (1/5)*L = (L/5) = ?
________________________________________
  A = L * w ;  we want to find the dimensions; that is, the values for
                         "Length (L)"  and "width (w)" ; 
_______________________________________
Plug in our given values:
_______________________________________
 (9/20) mi.² = L * (L/5) ;  in which: "w = L/5" ; 
 
     → (9/20) = (L/1) * (L/5) = (L*L)/(1*5) = L² / 5 ;
   
          ↔  L² / 5  = 9/20 ;
 
            →  (L² * ? / 5 * ?) = 9/20 ?    

                →     20÷5 = 4 ;  so; L² *4 = 9 ;
 
                   ↔    4 L² = 9 ; 
 
                   →  Divide EACH side of the equation by "4" ;
           
                   →   (4 L²) / 4 = 9/4 ;
______________________________________
           to get:  →  L² = 9/4 ; 
 Take the POSITIVE square root of each side of the equation; to isolate "L" on one side of the equation; and to solve for "L" ;
___________________________________________          
 
     →   ⁺√(L²)   =   ⁺√(9/4) ;

    →   L  =  (√9) / (√4) ; 

    →  L = 3/2 ; 

    → w = L/5 = (3/2) ÷ 5 = 3/2 ÷ (5/1) = (3/2) * (1/5) = (3*1)/(2*5) = 3/10;
________________________________________________________
Let us check our answers:
_______________________________________
(3/2 mi.) * (3/10 mi.) =? (9/20) mi.² ??

→ (3/2)mi. * (3/10)mi.  =  (3*3)/(2*10) mi.² = 9/20 mi.² ! Yes!
______________________________________________________
So the dimensions are: 

Length = (3/2) mi. ;  write as: 1.5 mi.

width = ³⁄₁₀ mi.
___________________________________________________
or; write as:  " 1.5 mi.  ×  ³⁄₁₀ mi. " .
___________________________________________________
7 0
2 years ago
Equation in slope-intercept form:
Jobisdone [24]

Answer:

y = -x + 3

Step-by-step explanation:

Find the slope using the formula [ y2-y1/x2-x1 ]. We can use the points (0, 3) and (3, 0) to solve.

0-3/3-0

-3/3

-1

From the graph, the y-intercept is (0, 3). Input all the data we know into the slope intercept form expression [ y = mx + b ].

y = -x + 3

Best of Luck!

5 0
2 years ago
CAN SOMEONE PLEASE HELP ME???<br> ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓∵
nata0808 [166]

Answer:

it is number 3 (-1/5)

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
BRAINLIEST IF CORRECT PLEASE USE WORK!
ladessa [460]

Answer:


To find the x-intercept, substitute in  0  for  y  and solve for  x . To find the y-intercept, substitute in  0  for  x  and solve for  y .

x-intercept: (− 45 , 0 )

y-intercept:  ( 0 , − 15 )

7 0
3 years ago
Read 2 more answers
What is the degree of angle e and g
Zina [86]

Answer:

e=g = 126 degree

Step-by-step explanation:

e = g (opposite angles's property)

g+ b = 180 ( supplementary angles's property)

b = 54 degree (opposite angles's property)

-> g = 180-54 = 126

-> e = 126 degree

3 0
2 years ago
Read 2 more answers
Other questions:
  • The 100 residents are asked if they like to watch basketball and or football. The results are that 98 like to watch basketball,
    9·1 answer
  • Before polishing, a steel plate was 2.342 inches thick. After polishing, it was 2.087 inches thick. How much was removed in poli
    15·2 answers
  • I can't quite remember how to approach this one, I have three others, but I think I could solve them if someone helped walked me
    6·1 answer
  • Find the average velocity of the function over the given interval 2+tan x[-pi/4
    10·1 answer
  • Write an equation for the line that passes through the points (1,4) and (2, -4).
    13·2 answers
  • What 34 divided by 20196
    9·1 answer
  • I need help <br> Do you feel we have created a new Era? Why or Why not?
    11·2 answers
  • which of the following ordered pairs could be placed in the table below and still have the relation qualify as a linear function
    7·1 answer
  • find the image ( -2, 1 ) obtained by traslating 3 units down followed by a reflection over the y-axis can comeone tell my the an
    9·1 answer
  • 3p^2+2p-8 factor the common factor out of the expression?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!