Answer:
Step-by-step explanation:
Let n = the smaller of the two numbers, and since the other number is 5 more than twice the smaller number n, then ...
Let 2n + 5 = the second and larger number.
Since the sum of the two unknown numbers is 26, then we can write the following equation to be solved for n as follows:
n + (2n + 5) = 26
n + 2n + 5 = 26
Collecting like-terms on the left, we get:
3n + 5 = 26
3n + 5 - 5 = 26 - 5
3n + 0 = 21
3n = 21
(3n)/3 = 21/3
(3/3)n = 21/3
(1)n = 7
n = 7
Therefore, ...
2n + 5 = 2(7) + 5
= 14 + 5
= 19
CHECK:
n + (2n + 5) = 26
7 + (19) = 26
7 + 19 = 26
26 = 26
Therefore, the two desired numbers whose sum is 26 are indeed 7 and 19.
Answer:
(n- 2/3)²
Step-by-step explanation:
- <em>Perfect square trinomial is: </em><em>a²+2ab+b²= (a+b)²</em>
We have:
It can be put as:
Here we consider n = a and -2/3 = b, then
Now we add 4/9 to a given binomial to make it perfect square:
- n² - 2×n×3/2 + 4/9= (n- 2/3)²
So, added 4/9 and got a perfect square (n- 2/3)²
Answer:
54
Step-by-step explanation:
all you have to do is times 18 by 3
I believe it is 2.33 repeating